Pediatric Peripherally Inserted Central Catheters: Complication Rates Related to Catheter Tip Location

John M. Racadio, MD*; Darcy A. Doellman, RN‡; Neil D. Johnson, MBBS, FRACR, MMED*; Judy A. Bean, PhD§; and Brian R. Jacobs, MD, FAAP|

ABSTRACT. Objective. To compare complication rates between central venous catheter tip location and noncentral tip location after peripherally inserted central catheter (PICC) placement in children.

Methods. Between 1994 and 1998, data from all children who underwent PICC placement were analyzed. Patient demographics, catheter characteristics, catheter duration, infusion composition, and catheter complications were entered prospectively into a computerized database. Catheter tip locations were determined by fluoroscopy and were defined as central if they resided in the superior vena cava, right atrium, or high inferior vena cava at or above the level of the diaphragm, and as noncentral if located elsewhere. Differences in complication rates between the central and noncentral groups were analyzed.

Results. Data from a total of 1266 PICCs were analyzed from 1053 patients with a mean age of 6.49 ± 2 years (range: 0–45.0 years). Of the 1266 PICCs, 1096 (87%) were central in tip location, and 170 (13%) were noncentral in tip location. The central group had 42 complications of 1096 catheters (3.8%), while the noncentral group had 49 complications of 170 catheters (28.8%). Controlling for patient age, catheter size, gender, and catheter duration with a logistic regression model, there remained a statistically significant increased likelihood of complication in the noncentral group versus the central group (adjusted odds ratio: 8.28; 95% confidence interval: 5.11–13.43).

Conclusions. Centrally placed catheter tips are associated with fewer complications than are noncentrally placed catheter tips. Clinicians should ensure that catheter tips reside centrally after PICC placement in infants and children. Pediatrics 2001;107(2). URL: http://www.pediatrics.org/cgi/content/full/107/2/e28; catheters, complications, PICC, central venous, children, infants, phlebitis, occlusion.

ABBREVIATIONS. PICC, peripherally inserted central catheter; SVC, superior vena cava; RA, right atrium; IVC, inferior vena cava; F, French; OR, odds ratio.

From the Departments of *Radiology, ‡Home Health Care, §Biositatsistics, and ¶Critical Care Medicine, Children's Hospital Medical Center, Cincinnati, Ohio.

Received for publication Jun 8, 2000; accepted Sep 13, 2000.

Reprint requests to (J.M.R.) Department of Radiology, Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039. E-mail: racajo@chmcc.org

PEDIATRICS (ISSN 0031 4005). Copyright © 2001 by the American Academy of Pediatrics.

http://www.pediatrics.org/cgi/content/full/107/2/e28
RESULTS
Between 1994 and 1998, data from a total of 1266 PICCs were analyzed from 1053 patients with a mean age of 6.49 ± .2 years (range: 0–45.0 years). There were 541 males (51.4%) and 512 females (48.6%). Mean PICC duration was 15.4 ± 4 days (range: 0–106 days). Of the 1266 PICCs, 1096 (87%) were central in tip location (central group), and 169 (13%) were noncentral in tip location (noncentral group). There was no statistically significant difference between the types of infusates administered to the central and noncentral groups (Table 1), with antibiotics being the most common infusate in both groups.

The mean age in the central group was older than that in the noncentral group (6.8 ± .2 years vs 4.3 ± .6 years; P < .01). The mean PICC duration was greater for the central group (16.4 ± .4 days) than for the noncentral group (9.3 ± .6 days; P < .01). The distribution of catheters by size and tip location is noted in Table 2. The proportions of catheter sizes were different (Fisher’s exact test, P < .01) between the central and noncentral groups. There was a greater proportion of 2 F catheters in the noncentral group compared with the central group (59% vs 34%, respectively).

The central group had 42 overall complications of 1096 catheters (3.8%), while the noncentral group had 49 overall complications of 170 catheters (28.8%; P < .01). The mean PICC duration was 16.4 ± 4 days for the noncentral group (9.3 ± .6 days; P < .01). The distribution of catheters by size and tip location is noted in Table 2. The proportions of catheter sizes were different (Fisher’s exact test, P < .01) between the central and noncentral groups. There was a greater proportion of 2 F catheters in the noncentral group compared with the central group (59% vs 34%, respectively).

The central group had 42 overall complications of 1096 catheters (3.8%), while the noncentral group had 49 overall complications of 170 catheters (28.8%; P < .01). The mean PICC duration was greater for the central group (16.4 ± .4 days) than for the noncentral group (9.3 ± .6 days; P < .01). The distribution of catheters by size and tip location is noted in Table 2. The proportions of catheter sizes were different (Fisher’s exact test, P < .01) between the central and noncentral groups. There was a greater proportion of 2 F catheters in the noncentral group compared with the central group (59% vs 34%, respectively).

The central group had 42 overall complications of 1096 catheters (3.8%), while the noncentral group had 49 overall complications of 170 catheters (28.8%; P < .01). The mean PICC duration was greater for the central group (16.4 ± .4 days) than for the noncentral group (9.3 ± .6 days; P < .01). The distribution of catheters by size and tip location is noted in Table 2. The proportions of catheter sizes were different (Fisher’s exact test, P < .01) between the central and noncentral groups. There was a greater proportion of 2 F catheters in the noncentral group compared with the central group (59% vs 34%, respectively).

The central group had 42 overall complications of 1096 catheters (3.8%), while the noncentral group had 49 overall complications of 170 catheters (28.8%; P < .01). The mean PICC duration was greater for the central group (16.4 ± .4 days) than for the noncentral group (9.3 ± .6 days; P < .01). The distribution of catheters by size and tip location is noted in Table 2. The proportions of catheter sizes were different (Fisher’s exact test, P < .01) between the central and noncentral groups. There was a greater proportion of 2 F catheters in the noncentral group compared with the central group (59% vs 34%, respectively).
TABLE 5. Definition of Central in Published PICC Studies

<table>
<thead>
<tr>
<th>Author</th>
<th>#PICCs</th>
<th>Age (Years)</th>
<th>Central</th>
<th>C Comp %</th>
<th>NC Comp %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kearns</td>
<td>72</td>
<td>Adults</td>
<td>SVC</td>
<td>16</td>
<td>61</td>
</tr>
<tr>
<td>Kearns</td>
<td>39</td>
<td>Adults</td>
<td>SVC</td>
<td>21</td>
<td>60</td>
</tr>
<tr>
<td>James</td>
<td>157</td>
<td>1.4–91</td>
<td>SVC</td>
<td>19</td>
<td>62</td>
</tr>
<tr>
<td>Donaldson</td>
<td>222</td>
<td>0–18</td>
<td>SVC/RA junction</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Dubois</td>
<td>285</td>
<td>0–18</td>
<td>SVC/RA junction</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Chait</td>
<td>148</td>
<td>0–19</td>
<td>SVC/RA junction</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Frey</td>
<td>269</td>
<td>0–27</td>
<td>SVC/IVC</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Thiagarajan</td>
<td>587</td>
<td>0–22</td>
<td>SVC RA IVC Subclavian</td>
<td>36</td>
<td>30</td>
</tr>
<tr>
<td>Crowley</td>
<td>523</td>
<td>0–18</td>
<td>SVC RA subclavian</td>
<td>NR</td>
<td>NR+</td>
</tr>
<tr>
<td>Thiagarajan</td>
<td>441</td>
<td>0–22</td>
<td>SVC RA IVC Subclavian</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

C Comp indicates central complications; NC Comp, noncentral complications; NR, not recorded.

* Subclavian and femoral veins “acceptable for antibiotics or nonhyperosmolar solutions.”

† Two episodes of thrombosis occurred with catheters whose tips were in left subclavian/internal jugular vein junction and left brachiocephalic/SVC junction (tip migrating to left internal jugular vein).

TABLE 4. Multiple Regression Analysis of Complication Rates Between Central and Noncentral Groups Adjusted for Age, Gender, Catheter Size, and Duration

<table>
<thead>
<tr>
<th>Variable</th>
<th>Adjusted OR</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noncentral tip location</td>
<td>8.28</td>
<td>5.11–13.43</td>
</tr>
<tr>
<td>Age</td>
<td>0.97</td>
<td>0.93–1.02</td>
</tr>
<tr>
<td>Gender</td>
<td>1.49</td>
<td>0.94–2.37</td>
</tr>
<tr>
<td>Catheter size (2F)</td>
<td>1.16</td>
<td>0.24–5.51</td>
</tr>
<tr>
<td>Catheter size (3F)</td>
<td>1.56</td>
<td>0.36–7.01</td>
</tr>
<tr>
<td>Catheter duration</td>
<td>0.97</td>
<td>0.93–0.99</td>
</tr>
</tbody>
</table>

Subclavian vein. In our study the complication rate for all PICCs whose tips were in the subclavian vein was 27.8% (10/36).

Studies focusing exclusively on PICCs in children all report success with relatively low complication rates.3,9–14 Evaluation of investigations concerning the relationship between PICC tip placement and subsequent complications is problematic because of the differences in patient populations including patient ages, diagnoses, insertion techniques, types of catheters, and definitions of central.3,9–14 Table 5 summarizes 10 recently published PICC articles and their definition of central.3,6,7,9–12,14,15 Although all studies regard the SVC as central some also include the subclavian and brachiocephalic veins. Our definition of central (SVC, RA, and high IVC at or above the level of the diaphragm) is based on vessel diameters, blood flow estimates, and physiologic flow dynamics. These central locations represent the regions of highest venous blood flow.16–19

Studies in adults clearly support the conclusion that central PICC tip location is associated with decreased complication rates.6,15,20 Kearns et al6 prospectively analyzed complications associated with PICC tip location in 72 adults and showed an increased risk of thrombosis with peripheral catheter tip location versus central catheter tip location (61% vs 16%; P < .05). In a follow-up randomized, controlled clinical trial in 39 adults, these same authors concluded that there was an increased risk of thrombosis of PICCs whose tips were in the axillosubclavian or brachiocephalic veins, compared with the SVC (60% vs 21%; P < .05). In addition, catheters associated with thrombosis were more likely to become infected (P < .02).6 A retrospective review of
data from 57 institutions examined the time required to develop a complication in 606 PICCs, comparing central versus noncentral catheter tip position. There were significantly increased rates of extremity inflammation (10% vs 2%; P < .05) and shorter median time to complication (30 days vs 223 days; P < .05) in catheters placed in a noncentral position.20 This review lead the National Association of Vascular Access Networks to recommend that “the most appropriate location for the tip of peripherally inserted central catheters (PICCs) is the lower one third of the superior vena cava (SVC), close to the junction of the SVC and the right atrium.”21

Decreased complication rates with centrally versus noncentrally located PICC tips is likely related to a combination of factors including vessel size, blood flow rate, turbulent flow, and endothelial injury.

Blood flow rate (volume per unit time) is dependent on diameter, length, and resistance within the vessel. Poiseuille’s law states that the conductance of the vessel increases in proportion to the fourth power of the radius. Thus, slight changes in the radius of a vessel result in large changes in the vessel’s ability to conduct blood. In adults estimated blood flow in the large superficial veins of the upper arm are 10 times less than flow in the SVC.15,22,23 Smaller vein diameters result in decreased blood flow, causing turbulence and prolonged intimal contact of infusates, which increases the risk of endothelial injury, thrombophlebitis and thrombosis.5,24–26 Although data pertaining to venous flow characteristics are not available in children, the discrepancy between flow rates is likely greater in children because of their relatively smaller caliber veins.

When a catheter tip is positioned in the subclavian vein, the blood flow and infusate dilution is adequate to administer most drugs and solutions without consequence. However, because flow dynamics in the upper extremity are highly variable in response to physical and environmental changes,16,18,19 uniform delivery of infusates cannot be guaranteed. Hightower and Gooding18 sonographically evaluated the physiologic changes in anteroposterior diameter of the subclavian vein in adults in response to various respiratory maneuvers. They demonstrated a wide range (−61% to +21%) of resting mean diam-
eters indicating great potential variability in blood flow rate and volume.

When a central venous catheter tip is positioned in the SVC, the tip is likely to lie parallel to, and not impinge on, the vessel wall. Solutions infused are rapidly diluted in this region. When the catheter tip lies peripheral to the SVC, factors such as venous tortuosity, valves, and decreased vein diameter increase the possibility of tip contact with the vein wall. This contact can disrupt the endothelial cell layer of the tunica intima, exposing the basement membrane, and triggering the clotting process.27

CONCLUSION

Centrally placed catheter tips are associated with fewer complications than noncentrally placed catheter tips. Clinicians should ensure that catheter tips reside centrally after PICC placement in infants and children.

REFERENCES