Growth Pattern of Breastfed and Nonbreastfed Infants With Atopic Dermatitis in the First Year of Life

Carlo Agostoni, MD*; Francesca Grandi, MD*; Silvia Scaglioni, MD*; Maria L. Gianni, MD*; Marta Torcoletti, MD*; Giovanni Radaelli, PhD‡; Alessandro Fiocchi, MD*; and Enrica Riva, MD*

ABSTRACT. Objective. The growth of infants with atopic dermatitis (AD) has been poorly investigated based on the early type of feeding. The aim of this study was to assess the growth pattern of AD infants during the first 12 months of life in comparison to healthy infants, according to the early type of feeding (breastfed or nonbreastfed).

Methods. Fifty-five term AD infants (36 breastfed and 19 nonbreastfed) and 114 term healthy infants (58 breastfed and 56 nonbreastfed) were evaluated by standardized growth indices (z scores; National Center for Health Statistics-World Health Organization data) through the first 12 months of life.

Results. No difference was found between AD and healthy groups at birth. In AD infants, weight (WA) and length (LA) z scores decreased with age and were significantly lower, compared with healthy infants from the second month of age onward. The difference of mean z scores between AD and healthy infants at 12 months of age was −.69 (95% confidence interval [CI]: −1.00 to −.38) for WA and −.67 (95% CI: −.98 to −.36) for LA. The growth pattern of AD infants was not influenced by the early type of feeding, whereas in the 6- to 12-month period, the delay in growth was more pronounced in patients with more severe dermatitis.

Conclusions. In the first year of life, AD infants show a progressive impairment in growth irrespective of the early type of feeding. The severity of disease may be an independent factor negatively influencing growth.

METHODS

Patient Populations and Measurements

Of 122 infants born in the maternity ward of our hospital during a 6-year period (1993–1998) and then consecutively admitted for symptomatic AD at our second level center for immune-allergic disorders, 55 (24 females and 31 males) entered the study according to the following eligibility criteria. Inclusion criteria were: gestational age, 37 to 42 weeks inclusive; Apgar score, >7 at 5 minutes; singleton birth; birth weight, ≥2500 g; no neonatal disease or congenital malformation; white parents; to be either exclusively or predominantly BF or non-BF (never BF) in the first 4 months of life; controls of growth performed in our hospital in the first 6 months of life; onset of AD within the first 6 months of life requiring a specialist care at a second level center; and to fulfill the Hanifin criteria for AD. Briefly, they are the presence of pruritus, family history of atopy, typical facial and extensor distribution, plus the presence of at least 3 minor features, such as, xerosis, early age of onset, tendency to skin infection, and food intolerance. Exclusion criteria were: mother with any dysmetabolic and/or chronic disease and mother drug user.

The control group (n = 138; 66 females and 72 males) was a cohort of healthy infants born in our maternity ward in the period 1993–1994. It included infants entering the same eligibility criteria of AD infants, except the presence of AD. Controls had no immune-allergic related disorders and/or chronic diseases during the study. Both patients (up to diagnosis) and controls were given similar advice on the introduction of solid foods from the fifth month of age onward according to present dietary recommendations. The trial protocol was approved by the institutional ethics committee and all parents signed a written informed consent for the follow-up.

The growth parameters (body weight and length) of AD infants were retrospectively evaluated up to diagnosis and then prospectively through 12 months of life. The healthy infants were pro-
spectively followed up from birth. The following data were further recorded: infant’s birth date, mother’s age, mother’s height and prepregnancy body weight, education level of the mother, familial social status, gestational age, and parity. The severity of dermatitis, elimination diets, and asthma were further assessed in AD infants.

Growth parameters were measured at birth and at age 1, 2, 3, 4, 6, 9, and 12 months with standardized techniques. The permissible time intervals around the actual chronological age for nominal age were within ± 7 days for the first 4 months of life and ± 14 days for the subsequent visits. The naked infant was weighted on an electronic Sartorius scale (Sartorius, AG, Göttingen, Germany) accurate to ± 5 g. Crown–heel length was measured on a portable measuring board to the nearest .1 cm. Experenced personnel at both the outpatient section and the second level center performed the measurements. In particular, the longitudinal growth measurements were performed according to a standardized procedure by the same 3 experienced pediatricians. At any time 3 measurements were taken for each growth parameter and the average value was then considered for the analysis. The coefficient of variation of the weight measurements ranged from 8% to 1.2% (observer 1), 8% to 1.1% (observer 2), and 9% to 1.2% (observer 3). The corresponding ranges of the coefficient of variation of the length measurements were 8% to 1.3% (observer 1), 9% to 1.4% (observer 2), and 9% to 1.2% (observer 3). The coefficient of variation in healthy infants ranged from 8% to 1.2% (weight) and from 9% to 1.2% (length), whereas in AD infants it ranged from 8% to 1.2% (weight) and from 9% to 1.4% (length). This makes the growth measurements and comparable interobservers’ measurements variation accurate.

Actual chronological decimal age was used to calculate the standardized anthropometric indices (z scores). The z scores represent the distance in standard deviation (SD) units from the Center of Disease Control and Prevention-World Health Organization normative reference data adjusted for age and gender.\(^\text{16}\) The weight and length z scores (on the following also called weight for age [WAZ] and length for age [LAZ] z scores) were calculated by means of the 1990 ANTHRO Pediatric Anthropometry Software Program, Version 1.01 (Centers for Disease Control and Prevention, Atlanta, GA).

The type of feeding was defined according to World Health Organization definitions.\(^\text{9,10}\) The BF group included exclusively (infant required to receive breast milk; drops, syrups allowed and anything else not allowed) or predominantly (infant required to receive breast milk as the predominant source of nourishment; liquids, ritual fluids, drops, syrups allowed and anything else not allowed) BF infants. Infants in the non-BF group were never BF during the first 4 months of life and were fed standard formulas, well energy, protein, carbohydrate, fat, and micronutrient composition complied with that of the European Society of Pediatric Gastroenterology and Nutrition.\(^\text{15,17}\) Infants who switched toward bottle feeding in the 0- to 4-month period did not enter the present study.

Maternal height and prepregnancy body weight were obtained from the obstetric clinical records. The maternal education level (number of school years) and familial social status were coded from the obstetric clinical records. The maternal education level and prepregnancy body weight were obtained: infant’s birth date, mother’s age, mother’s height and prepregnancy body weight, education level of the mother, familial social status, gestational age, and parity. Asthma was defined as 3 episodes of nocturnal cough with sleep disturbances or wheezing, separated by at least 7 days, in a clinical setting where asthma is likely.\(^\text{21}\)

Statistical Analysis

The sample size was determined to detect at any time a 1 SD unit of difference in the WA and LA z scores between BF and non-BF AD infants. Admitting a type I error level of 5% and a power of 80%, at least 17 patients in each group were required. Descriptive data are shown as mean (SD) or number of observation. Ninety-five confidence intervals (CIs) were also calculated. Comparison of continuous and discrete variables between unpaired groups were performed by the Student’s t test or by the Mann–Whitney U test, and by the χ² test or Fisher’s exact test, as appropriate. Weight, length, and the relative z scores were normally distributed, so the growth patterns of AD and control groups, and those of BF and non-BF infants, were compared by analysis of variance (ANOVA) for repeated measures. Adjustment for possible confounders (infant’s gender, infant’s birth date, and maternal age) was also performed. Posthoc multiple comparisons were performed by Bonferroni’s test. At 12 months of age, pairwise comparisons were based on estimated marginal means. ANOVA was further used in AD infants to assess the association of some variables (age at onset, severity of disease, elimination diets, and asthma) with the infants’ growth pattern. P values < .05 were considered to indicate statistical significance (2-tailed test). The SPSS 8.0 Package for Windows (SPSS Inc, Chicago, IL) was used for the statistical analysis.

RESULTS

Follow-up data at the age of 12 months were available in all of the 55 AD infants (36 BF and 19 non-BF) and in 114 (82.6%) controls (58 BF and 56 non-BF). AD infants and controls were comparable for the baseline characteristics (Table 1). Mean (SD) age at AD onset was 3.0 (1.6) months in BF infants and 2.4 (1.2) months in non-BF infants (P = .12). Asthma coexisted in 13 of the infants (23.6%) with AD (9 BF and 4 non-BF). Mean (SD; median) age at onset of asthma symptoms was 5.5 (3.8; 4.0) months in BF infants and 3.3 (1.5; 3.0) months in non-BF infants (P = .41). Table 2 shows the growth indices of AD infants and controls during the first year of life. Subjects affected by AD showed a progressive impairment of growth both in WA and LA z scores (P < .001).

The growth indices drastically impaired after the onset of disease, compared with the values from just before the onset of disease (mean difference: Δ, −27; 95% CI, −41 to −.14, for WA z score; Δ, −17; 95% CI, −30 to −.03, for LA z score), but before the onset of disease infants already showed a significantly negative mean LA z score (−.22; 95% CI: −.19 to −.60).

Differences between AD infants and controls were significant from the second months of age onward, more markedly in the second 6 months of life. These differences remained significant after adjustment for confounders and early type of feeding (maximum P = .05). In particular, at 12 months of age the adjusted mean difference was −.69 (95% CI: −1.00 to −.38) for WA z score and −.67 (95% CI: −.98 to −.36) for LA z score.

Figures 1 and 2 show the pattern of growth indices in AD and healthy infants for BF and non-BF groups during the first 12 months of life. In the AD group an impairment of growth occurred both in BF (P < .001)
and non-BF (*P < .001) infants. At birth the mean LA z score was higher in BF than in non-BF infants (mean difference: Δ.47; 95% CI: .07–.88) but no other significant difference was found between the BF and non-BF infants both for WA z score (maximum Δ: .26; 95% CI: −.34–.86, at birth) and LA z score (maximum Δ: .20; 95% CI: −.23–.64 at 3 months of age). In contrast, in the control group the early type of feeding influenced both WA (P < .0001) and LA (P < .01) z score patterns. In particular in this group, BF infants had a WA z score significantly higher than the non-BF infants at birth and at 1, 2, and 3 months of age (Δ: .39; 95% CI: .06–.72, at birth; Δ: .57; 95% CI: .32–.83, at 1 month; Δ: .51; 95% CI: .28–.75, at 2 months; Δ: .38, 95% CI: .14–.64, at 3 months of age) and LA z score significantly higher than the non-BF infants at 1, 2, and 3 months of age (Δ: .44; 95% CI: .55–.72, at 1 month; Δ: .31; 95% CI: .02–.60, at 2 months; Δ: .38; 95% CI: .07–.68, at 3 months of age).

Table 3 shows the adjusted mean of the WA and LA z scores at 12 months of age in AD and controls for BF and non-BF infants, respectively. Growth indices were remarkably lower among atopics than among controls (maximum *P = .007). In BF infants the mean difference between AD and controls was −.57 (95% CI: −.97 to −.18) for WA z score and −.59 (95% CI: −.98 to −.21) for LA z score. In non-BF infants the mean difference between AD and controls was −.80 (95% CI: −1.29 to −.30) for WA z score and −.72 (95% CI: −1.24 to −.20) for LA z score.

Finally, an analysis was performed in AD infants only to assess any possible association of the growth with the age at onset, severity of disease, elimination diet, and asthma. At univariate ANOVA only the severity of disease was associated with a more pronounced WA growth impairment in the second 6 months of life (*P < .05). Infants with severe dermatitis (n = 18) had a lower WA z score in the 6- to 12-month period than did those with nonsevere disease (n = 37; mean difference: Δ: −.51; 95% CI: −.91 to −.12, at 6 months; Δ: −.42; 95% CI: −.85–.00, at 9 months; Δ: −.46; 95% CI: −.92–.00, at 12 months of age). The difference remained significant at 6 months of age also after adjustment for confounders and the early type of feeding (Δ: −.47; 95% CI: −.87 to −.08).
and then decreased (Δ: −.38; 95% CI: −.85−−.09, at 12 months of age).

DISCUSSION

An impairment of growth pattern has been recognized as complication of AD in childhood,²⁻⁶ but it is unknown when it begins. Moreover, it has been shown that the early type of feeding can influence the growth of healthy infants during the first year of life,⁷ but in AD infants, this factor has been investigated only within a BF group in relation to the effects of discontinuing breastfeeding.²²

The aims of this study were to compare the growth pattern of AD and healthy infants during the first year of life and to evaluate whether any difference exists between BF and non-BF infants.

We have found an impairment in growth of AD infants in the first year of life beginning in the first months of life. The impairment was notably marked after the onset of disease, but in length it was evident.

Fig 1. Mean (standard error of the mean) WA z score. AD versus controls: significant difference (maximum P < .05) among BF infants at 2, 3, 4, 6, 9, and 12 months of age and among non-BF infants at 3, 4, 6, 9, and 12 months. BF versus non-BF: significant difference (maximum P < .05) among controls at 0, 1, 2, and 3 months of age.

Fig 2. Mean (standard error of the mean) LA z score. AD versus controls: significant difference (maximum P < .05) among BF at 1, 2, 3, 4, 6, 9, and 12 months of age and among non-BF at 6, 9, and 12 months. BF versus non-BF: significant difference (maximum P < .05) among controls at 1, 2, and 3 months of age and among AD infants at birth.

TABLE 3. Growth indices of AD Infants and Controls at 12 Months of Age in BF and non-BF Groups

<table>
<thead>
<tr>
<th></th>
<th>BF</th>
<th></th>
<th>Non-BF</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>WA z Score</td>
<td>LA z Score</td>
<td>n</td>
</tr>
<tr>
<td>AD infants</td>
<td>36</td>
<td>−.49 (−.80, −.17)*</td>
<td>−.47 (−.78, −.17)*</td>
<td>19</td>
</tr>
<tr>
<td>Controls</td>
<td>58</td>
<td>.08 (−.15, .32)</td>
<td>.12 (−.10, .36)</td>
<td>56</td>
</tr>
</tbody>
</table>

Values are mean (95% CI) adjusted for infant’s gender, birth date, weight and length at birth, and mother’s age.

* P < .01 versus controls.
before the onset of disease. Indeed, in the healthy group the mean values of WA and LA z score ranged during the first year of life between approximately the corresponding 50th and 57th percentiles of reference age- and gender-adjusted growth curves. These results are consistent with values found in other studies. In contrast, AD infants showed a value of growth indices averaging the 50th percentile only at birth, whereas at 3, 6, and 12 months of age the WA and LA z scores regressed approximately to the 41st, 31st, and 30th percentiles and to the 38th, 30th, and 31st percentiles, respectively. The difference between AD and healthy infants remained both in BF and non-BF infants.

These findings, while confirming that young AD children have an impaired growth compared with healthy controls, further point out that an impairment in growth of AD infants is already evident during the early months of life. However, unlike healthy infants, the early type of feeding seems to have only a marginal influence on growth in AD infants during the first year of life. In contrast, severity of disease may be associated with a more pronounced impairment of growth. This finding is supported by Miyoshi and colleagues, who found that the WA and LA z scores of AD infants were significantly lower in subjects with more severe dermatitis. The negative effect of severity of disease on growth may suggest some speculations about the causes of growth impairment in AD. In particular, a reduced growth might be related to a decreased energy and protein intake for the less acceptable dietary schedules and/or the disturbing symptoms. A negative effect of AD on absorption from local mucosal reactions in the intestinal tract may be also hypothesized, as well as an increased energy and protein expenditure for a modified skin turnover and a major infant’s reactivity. Finally, a neurohormonal action negatively affecting growth progression could be mediated by the drug treatment. More studies are desirable to investigate the previous hypotheses to clarify the underlying mechanism of the poor growth of the AD infants during the first year of age. Whenever the cause, dietary interventions may be required to reduce the negative effect of AD on growth. Recently, Isolauri et al found that atopic infants with onset of allergic disease during exclusive breastfeeding reduced significantly the severity of AD after stopping breastfeeding, while the relative length of infants increased. In this context the immediate advantage deriving from allergen avoidance should be weighed with the long-term benefits of breastfeeding on the prevention of allergic disorders.

CONCLUSION

The atopic status itself seems to represent a major risk condition for the impairment of growth of infants with AD during the first year of life, while the early type of feeding may have just a marginal role. Although we still need to identify the metabolic process adversely affecting growth in AD infants, “individually tailored elimination diets” may be required to sustain an adequate growth in this population.

REFERENCES

Growth Pattern of Breastfed and Nonbreastfed Infants With Atopic Dermatitis in the First Year of Life
Carlo Agostoni, Francesca Grandi, Silvia Scaglioni, Maria L. Gianni?, Marta Torcoletti, Giovanni Radaelli, Alessandro Fiocchi and Enrica Riva

Pediatrics 2000;106;e73
DOI: 10.1542/peds.106.5.e73

Updated Information & Services
including high resolution figures, can be found at:
/content/106/5/e73.full.html

References
This article cites 20 articles, 6 of which can be accessed free at:
/content/106/5/e73.full.html#ref-list-1

Citations
This article has been cited by 1 HighWire-hosted articles:
/content/106/5/e73.full.html#related-urls

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Developmental/Behavioral Pediatrics
/cgi/collection/development:behavioral_issues_sub
Growth/Development Milestones
/cgi/collection/growth:development_milestones_sub
Chapters Views & News
/cgi/collection/chapters_views_news
Nutrition
/cgi/collection/nutrition_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml
Growth Pattern of Breastfed and Nonbreastfed Infants With Atopic Dermatitis in the First Year of Life
Carlo Agostoni, Francesca Grandi, Silvia Scaglioni, Maria L. Gianni?, Marta Torcoletti, Giovanni Radaelli, Alessandro Fiocchi and Enrica Riva

Pediatrics 2000;106:e73
DOI: 10.1542/peds.106.5.e73

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/106/5/e73.full.html