Morbid Hypocalcemia Associated With Phosphate Enema in a Six-Week-Old Infant

Dawn M. Walton, MD*‡; David C. Thomas, MD*‡; Hany Z. Aly, MD*‡; and Billie L. Short, MD*‡

ABSTRACT. A 6-week-old premature infant who was born at 29 weeks of gestation presented to the emergency department with a several-hour history of stiffness and increased alarms on his apnea monitor at home. On arrival he was noted to have generalized seizures, apnea, and bradycardia. He was intubated and required cardiopulmonary resuscitation including chest compressions and medications. After stabilization he was transferred to the neonatal intensive care unit for further management. His initial laboratory tests revealed a serum calcium level of 2.4 mg/dL (normal range: 8.4–10.2 mg/dL) and a serum phosphorus level of 28.5 mg/dL (normal range: 2.4–4.5 mg/dL). During the first week of admission, the infant’s mother reported that she had administered a full pediatric Fleets enema (CB Fleet Company Inc, Lynchburg, VA) to him. The infant was discharged after 12 days of hospitalization.

Anticipatory guidance on the stool patterns and behavior of infants can prevent misconceptions about constipation that are especially prevalent in new parents. Proper management of constipation, should it arise, should be addressed with all parents at early well-child visits to avoid hazardous complications of treatments. Pediatrics 2000;106(3). URL: http://www.pediatrics.org/cgi/content/full/106/3/e37; hypocalcemia, seizures, premature infants, enema.

There have been a few historical reports of fatal electrolyte disturbances after the administration of enemas for constipation relief.1,2 This article describes the first reported case of a former premature infant who presented with profound hypocalcemic seizures and cardiac arrest after the administration of a sodium phosphate Fleets enema at home.

CASE REPORT

A 6-week-old premature infant who was born at 29 weeks’ gestation presented to a community hospital emergency department with a several-hour history of stiffness and increased alarms on his apnea monitor at home. On arrival, he was noted to have generalized seizures, apnea, and bradycardia. He was intubated and required cardiopulmonary resuscitation, including chest compressions and 3 doses of epinephrine, before restoration of a normal heart rate. He also received 3 mEq/kg of sodium bicarbonate, 3 mL/kg D5W, and 50 mg/kg of cefotaxime via bilateral intravenous lines during the resuscitation. Phenobarbital was given in an attempt to stop the seizure activity, without success. After stabilization he was transferred to the neonatal intensive care unit at our institution for further management.

History obtained from the birth hospital revealed that he was born at 29 weeks of gestation to a 36-year-old, gravida 7, para 4 mother. Pregnancy was complicated by premature prolonged rupture of amniotic membranes for 3 days before delivery. Screening test for group B streptococcus was negative. His birth weight was only 992 g (<25%), which prompted a work-up for intrauterine growth restriction including a normal karyotype and negative screening tests for toxoplasmosis, cytomegalovirus, herpes simplex virus, and syphilis. Except for a few episodes of apnea, the postnatal course was uncomplicated and he was discharged from the hospital at 4 weeks old with an apnea monitor and no medications. A sleep study test was not available. He was discharged on the follow-up milk formula, Neocate (Ross Products Division, Abbott Laboratories, Columbus, OH), but his primary caretaker (a maternal aunt) was feeding him regular infant formula, Similac (Ross Products Division, Abbott Laboratories), for financial reasons. Proper preparation of formula was described on admission. His caretakers reported no events on the apnea monitor before the day of admission and no concerns except for constipation that was described as infrequent soft stools with apparent straining on defecation. At the time of admission they reported no use of constipation remedies or use of other formula, water, cow’s milk, cereal, or juices. He had not seen a pediatrician since discharge.

Physical examination on arrival to the neonatal intensive care unit at the Children’s National Medical Center was remarkable for a pale, lethargic, and intubated infant with frequent spasms of the extremities and slow jerking of the head to one side. Axillary temperature was 36.7°C, pulse rate was 148/minute, and mean arterial pressure was 40 mm Hg. He was breathing spontaneously on the ventilator. The anterior fontanel was open and flat. Pupils were equal and reactive. A bullous skin lesion with an erythematous base was present above the umbilicus, where a temperature probe had been placed during resuscitation. Cardiac examination revealed regular rate and rhythm with no murmurs. The capillary refill was 4 to 5 seconds, and all pulses were weak. Lungs were clear on auscultation with equally good air entry bilaterally. The abdomen was soft and nontender, but distended. Bowel sounds were absent. The infant’s tone was generally poor with irregular movements as described above.

Initial laboratory data on admission are presented in Table 1. Chest radiogram revealed a left lower lobe opacity believed to be an infiltrate because no previous films were available for comparison. Head computed tomography scan was within normal limits for gestational age.

Because the serum phosphorus, calcium, and magnesium were grossly abnormal, serum parathyroid hormone level was measured. Intravenous boluses of magnesium and calcium were administered until normal serum levels of calcium, magnesium, and phosphorus were obtained by the fourth day of hospitalization. The infant was able to maintain normal serum minerals values as intravenous fluid was weaned off and feeding with the follow-up milk formula, EnfaCare-22 (Mead Johnson Nutritional, Evansville, IN), was established (Table 1). Phenobarbital was discontinued, and no further seizure activity was noted. All cultures were negative and antibiotics were discontinued after 7 days. Intact serum parathyroid hormone level was 173 pg/mL (normal range: 12–72 pg/mL).

During the first week of admission, the biologic mother re-
‡ Normal range is 1.7 to 2.2 mg/dL.
† Normal range is 8.4 to 10.2 mg/dL.
* Normal range is 2.5 to 4.5 mg/dL.

phatase enzyme levels at discharge from the birth
mal serum calcium, phosphorous, and alkaline phos-
2o f3

weeks of gestation.4 For this reason, along with a
tation, and the peak accretion occurs at 34 to 36
these minerals starts to increase at 24 weeks of ges-

vitamin D, and calcitonin.3 The fetal build-up for
infant defecation patterns.

...providing parental education that overemphasizes
sonnel may unnecessarily heighten this concern by

cern for new parents. Well-meaning health care per-
color or frequency can be a significant cause of con-
caused by an over-the-counter remedy for constipa-

TABLE 1. Laboratory Values on Admission and at Discharge

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Admission</th>
<th>Discharge</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White count</td>
<td>7.3</td>
<td>10.7</td>
<td>10³/mm³</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>6.3</td>
<td>12.4</td>
<td>g/dL</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>18.8%</td>
<td>37.4</td>
<td></td>
</tr>
<tr>
<td>Platelet</td>
<td>252</td>
<td>282</td>
<td>10³/mm³</td>
</tr>
<tr>
<td>Differential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granulocyte</td>
<td>3%</td>
<td>31%</td>
<td></td>
</tr>
<tr>
<td>Lymphocyte</td>
<td>74%</td>
<td>42%</td>
<td></td>
</tr>
<tr>
<td>Monocyte</td>
<td>6%</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>Neutrophil band</td>
<td>16%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Arterial blood gas Ph</td>
<td>7.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial pressure of</td>
<td>35</td>
<td></td>
<td>mm Hg</td>
</tr>
<tr>
<td>carbon dioxide, arterial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial pressure of</td>
<td>42</td>
<td></td>
<td>mm Hg</td>
</tr>
<tr>
<td>oxygen, arterial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>14</td>
<td></td>
<td>mmol/L</td>
</tr>
<tr>
<td>Base deficit</td>
<td>-12.5</td>
<td></td>
<td>mmol/L</td>
</tr>
<tr>
<td>Blood chemistry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>145</td>
<td>140</td>
<td>mmol/L</td>
</tr>
<tr>
<td>Potassium</td>
<td>3.2</td>
<td>4.6</td>
<td>mmol/L</td>
</tr>
<tr>
<td>Chloride</td>
<td>102</td>
<td>112</td>
<td>mmol/L</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>12</td>
<td>25</td>
<td>mmol/L</td>
</tr>
<tr>
<td>Blood urea nitrogen</td>
<td>2</td>
<td>2</td>
<td>mg/dL</td>
</tr>
<tr>
<td>Creatinine</td>
<td>.5</td>
<td>.3</td>
<td>mg/dL</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>28.5*</td>
<td>5.7</td>
<td>mg/dL</td>
</tr>
<tr>
<td>Calcium</td>
<td>2.4‡</td>
<td>9.4</td>
<td>mg/dL</td>
</tr>
<tr>
<td>Magnesium</td>
<td>14</td>
<td>2.3</td>
<td>mg/dL</td>
</tr>
<tr>
<td>Albumin</td>
<td>1.8</td>
<td>3.1</td>
<td>g/dL</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>126</td>
<td>229</td>
<td>U/L</td>
</tr>
</tbody>
</table>

* Normal range is 2.5 to 4.5 mg/dL.
† Normal range is 8.4 to 10.2 mg/dL.
‡ Normal range is 1.7 to 2.2 mg/dL.

ported that while under her care on the day before admission, she
had administered a full pediatric Fleet’s enema to her infant. The
infant was discharged from the hospital under the care of his aunt
after 12 days of hospitalization. Follow-up with serum parathy-
roid hormone level was recommended to the primary pediatri-

DISCUSSION

This is a case of a near fatal electrolyte disturbance
caused by an over-the-counter remedy for constipa-
Straining with defecation or changes in stool color or frequency can be a significant cause of con-
cern for new parents. Well-meaning health care per-
sonnel may unnecessarily heighten this concern by
providing parental education that overemphasizes monitoring infant defecation patterns.

Calcium and phosphorous are tightly regulated by the interdependent actions of parathyroid hormone,
vitamin D, and calcitonin.3 The fetal build-up for these
minerals starts to increase at 24 weeks of ges-
tation, and the peak accretion occurs at 34 to 36
weeks of gestation.4 For this reason, along with a
suboptimal intake of calcium and phosphorus, pre-
mature infants become deficient in these minerals
after birth. The recommended daily allowance for
these minerals is much higher for preterm infants
compared with term infants.5,6 This patient had nor-
mal serum calcium, phosphorous, and alkaline phos-
phatase enzyme levels at discharge from the birth

REFERENCES
1. Davis RF, Eichner JM, Bleyer WA, Okamoto G. Hypocalcemia, hyper-
phosphatemia, and dehydration following a single hypertonic phos-
2. Martin RR, Lisehora GR, Braxton M, Barcia PJ. Fatal poisoning from
hospital but had been home on a less than optimal
formula, in terms of mineral supply, for his gesta-
tional age. However, his serum alkaline phosphatase
enzyme level on this admission was still within the
normal range. The differential diagnosis of hypocal-
cemia can be classified by early versus late onset of
the symptoms. Early-onset hypocalcemia usually
presents in the first 48 hours of life and is frequently
secondary to prematurity, perinatal asphyxia, mater-
nal diabetes mellitus, or maternal use of anticonvul-
sants.7 Late onset, as in this case, was historically
associated with early use of cow milk-based formu-
las with a high phosphate load and a low calcium to
phosphorous ratio. Infant formulas currently on the
market have more favorable calcium to phosphorous
ratios and, therefore, may reduce this problem. Other
causes of late-onset hypocalcemia include phosphate
loads from other sources, hypomagnesemia, and hy-
poparathyroidism. In this patient, the high phos-
phate load from the enema led to the severe hyper-
phosphatemia and hypocalcemia that resulted in
seizure activity and cardiorespiratory arrest. The el-
evated parathyroid hormone is secondary to the state
of severe hypocalcemia.

Sodium phosphate enemas, like many other over-
the-counter medications, are not recommended for
children <2 years of age. They do not require a
prescription; however, they are kept behind the
counter in many pharmacies so consumers can be
instructed on the proper usage. A rectal dosage of a
pediatric enema contains 11.4 mmol of dibasic sodi-
um phosphorous and 39.7 mmol of monobasic sodi-
um phosphorous. The recommended daily allow-
ance for phosphorous in an infant is only 1 to 2
mmol/kg/day. In the past, many physicians would
recommend enemas for infants with the belief that
very little phosphorous is absorbed during rectal
administration. There have been a few case reports of
fatal poisoning and severe electrolyte disturbances
after the administration of phosphate enemas in chil-
dren of different ages. One fatal case resulted from
enemas administered in the hospital before surgery.2
This case led the authors to perform an experimental
study with piglets to measure the absorption of elec-
trolytes after different dosages of enemas. The ad-
mistration of enema—even at a dose as low as 20
mL/kg—was fatal.2 Although no longer recom-
mended for infants’ constipation, these products are
still available for other uses such as preoperative
colonic bowel preparation.

Anticipatory guidance on the stool patterns and
behavior of infants can prevent misconceptions
about constipation that are especially prevalent in
new parents. Proper management of constipation,
should it arise, should be addressed with all parents
at early well-child visits to avoid hazardous compli-
cations of treatments.

2 of 3 MORBID HYPOCALCEMIA ASSOCIATED WITH PHOSPHATE ENEMA IN A SIX-WEEK-OLD INFANT
Downloaded from by guest on August 30, 2017


Infant Morbid Hypocalcemia Associated With Phosphate Enema in a Six-Week-Old

Dawn M. Walton, David C. Thomas, Hany Z. Aly and Billie L. Short

Pediatrics 2000;106;e37
DOI: 10.1542/peds.106.3.e37

Updated Information & Services
including high resolution figures, can be found at:
/content/106/3/e37.full.html

References
This article cites 3 articles, 1 of which can be accessed free at:
/content/106/3/e37.full.html#ref-list-1

Citations
This article has been cited by 1 HighWire-hosted articles:
/content/106/3/e37.full.html#related-urls

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Pharmacology
/cgi/collection/pharmacology_sub
Therapeutics
/cgi/collection/therapeutics_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2000 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.
Morbid Hypocalcemia Associated With Phosphate Enema in a Six-Week-Old Infant
Dawn M. Walton, David C. Thomas, Hany Z. Aly and Billie L. Short

Pediatrics 2000;106;e37
DOI: 10.1542/peds.106.3.e37

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/106/3/e37.full.html

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2000 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.