A Trade-off Analysis of Routine Newborn Circumcision

Dimitri A. Christakis, MD, MPH*‡; Eric Harvey, PharmD, MBA‡; Danielle M. Zerr, MD, MPH*; Chris Feudtner, MD, PhD§; Jeffrey A. Wright, MD*; and Frederick A. Connell, MD, MPH‡||

Abstract. Background. The risks associated with newborn circumcision have not been as extensively evaluated as the benefits.

Objectives. The goals of this study were threefold: 1) to derive a population-based complication rate for newborn circumcision; 2) to calculate the number needed to harm for newborn circumcision based on this rate; and 3) to establish trade-offs based on our complication rates and published estimates of the benefits of circumcision including the prevention of urinary tract infections and penile cancer.

Methods. Using the Comprehensive Hospital Abstract Reporting System for Washington State, we retrospectively examined routine newborn circumcisions performed over 9 years (1987–1996). We used International Classification of Diseases, Ninth Revision codes to identify both circumcisions and complications and limited our analyses to children without other surgical procedures performed during their initial birth hospitalization.

Results. Of 354,297 male infants born during the study period, 130,475 (37%) were circumcised during their newborn stay. Overall 287 (.2%) of circumcised children and 33 (.01%) of uncircumcised children had complications potentially associated with circumcision coded as a discharge diagnosis. Based on our findings, a complication can be expected for every case of penile cancer prevented.

Conclusions. Circumcision remains a relatively safe procedure. However, for some parents, the risks we report may outweigh the potential benefits. This information may help parents seeking guidance to make an informed decision. Pediatrics 2000;105:246–249; newborn circumcision, complications, urinary tract infections.

ABBREVIATIONS. UTI, urinary tract infection; NNT, number needed to treat; NNH, number needed to harm; CHARS, Comprehensive Hospital Abstract Reporting System.

Routine circumcision of newborn infants remains controversial.1-3 Although a recent policy statement by the American Academy of Pediatrics recommended that parents be given accurate and unbiased information regarding the risks and benefits of the procedure,4 accomplishing this task of well informed consent is hindered both by the lack of precise information about potential harm and by the lack of clear ways to present this information.

The benefits of circumcision have been described in numerous previous studies using a variety of methodologies.4-8 Reported benefits include reduction in the risk of penile cancer,9 urinary tract infections (UTIs),4,5 and sexually transmitted diseases.10,11 Although the extent to which circumcision decreases the risk of each of these outcomes has been debated,6,12-15 a consensus appears to be emerging that there are some small protective effects.3

These protective effects of circumcision (or any other therapy) can be meaningfully conveyed in terms of a number needed to treat (NNT). The NNT is calculated from the reciprocal of the absolute risk reduction associated with a given treatment.16 In the case of circumcision, this number represents the number of children who would need to be circumcised to prevent 1 undesired outcome such as UTI.

Although NNTs inform both providers and patients of the benefits of a given therapy or procedure, by themselves the NNTs present only half of the pertinent equation. What is also needed to make an informed decision is the number needed to harm (NNH). By analogy to NNTs, NNHs are based on the absolute difference in complication rates between treatment and control groups and tell one in effect how many patients would need to be circumcised before an adverse event can be expected to occur. Taken together, NNTs and NNHs can be used to construct a framework of “trade-offs”; in essence, one can compute how many undesirable outcomes will be prevented per complication incurred. Trade-offs can be useful to patients and providers seeking to weigh the pros and cons of a given procedure.

Although existing data are sufficient to enable us to estimate the NNT with circumcision for given outcomes, the risks of the procedure have received considerably less attention, hindering our ability to calculate NNHs. Previous studies of newborn circumcision complications have reported rates be-
between .19 and .60%, but because these data were either derived from single institutions or from the children of army recruits they are not population-based. Therefore we undertook a large, retrospective, population-based cohort study of circumcision of newborn infants. Our goals were threefold: 1) to obtain population-based estimates of complications associated with circumcision; 2) to convert these complication rates into NNHs; and 3) to use these NNHs in conjunction with published data of the benefits of the procedure to develop a framework for presenting NNT versus NNH trade-offs to better inform both practitioners and parents about routine newborn circumcision.

METHODS

Data Source

We used the Comprehensive Hospital Abstract Reporting System (CHARS) to conduct a retrospective analysis of 9 years (1987–1996) of routine newborn circumcisions performed in hospitals throughout Washington State. The CHARS contains International Classification of Diseases, Ninth Revision diagnosis and procedure codes for all discharges from short-stay hospitals in Washington State including birth hospitalizations. Each patient is assigned a unique yet anonymous identifier, enabling the analysis of patient level data without compromising confidentiality.

Patients

A retrospective cohort was assembled by using the CHARS to identify all newborn male infants who had circumcision coded during the birth hospitalization and had no complications related to circumcision occur shortly after the procedure, and because we could not ascertain whether children who were not circumcised during their initial newborn stay were not subsequently circumcised as outpatients. However, we did include children who were transferred from one hospital to another and thus were continuously hospitalized from birth. Based on previous reports of complications attributable to circumcision, we searched for specific International Classification of Diseases, Ninth Revision codes during postpartum hospitalizations. These codes are presented in Table 1.

NNTs to Prevent Undesired Outcomes

Based on published reports in the literature, we calculated NNTs for several outcomes. In the case of UTI in the first year of life, the NNT is 100 based on data from previous cohort studies; that is, 100 children need to be circumcised to prevent 1 case of penile cancer. Although results from a population-based study appear to refute this association. Moreover, sexual behavioral practices remain the most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTIs and penile cancer. These 2 outcomes also usefully frame all others: UTI is the most important modifiable risk factor for sexually transmitted diseases. The most important modifiable risk factor for sexually transmitted diseases. Therefore, we focused on the potential role of circumcision in the prevention of UTI The data for infection and injury are presented in Table 1.

TABLE 1. Complications Attributable to Newborn Circumcision Among Circumcised and Noncircumcised Males During the Birth Hospitalization

<table>
<thead>
<tr>
<th>Complication (International Classification of Diseases, Ninth Revision)</th>
<th>Circumcised N = 130,475</th>
<th>Not Circumcised N = 223,822</th>
<th>NNH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemorrhagic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraoperative bleeding (998.1)</td>
<td>209 (.16)</td>
<td>30 (.01)*</td>
<td>667</td>
</tr>
<tr>
<td>Hemorrhage control (399.8)</td>
<td>12 (.0009)</td>
<td>0*</td>
<td>1111</td>
</tr>
<tr>
<td>Suture of artery, vein, vessel (393.0, 393.1, 393.2)</td>
<td>9 (.0007)</td>
<td>0*</td>
<td>14286</td>
</tr>
<tr>
<td>Total</td>
<td>230 (.18)</td>
<td>30 (.01)*</td>
<td>588</td>
</tr>
<tr>
<td>Injury</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penile repair (644.9)</td>
<td>23 (.02)</td>
<td>0*</td>
<td>5000</td>
</tr>
<tr>
<td>Suture penile laceration (644.1)</td>
<td>29 (.02)</td>
<td>0*</td>
<td>5000</td>
</tr>
<tr>
<td>Wound-penis (679.0, 678.1)</td>
<td>3 (.002)</td>
<td>1**</td>
<td>50000</td>
</tr>
<tr>
<td>Reconstruction of penis (664.4)</td>
<td>1 (.0008)</td>
<td>0</td>
<td>125000</td>
</tr>
<tr>
<td>Total</td>
<td>56 (.04)</td>
<td>1*</td>
<td>3333</td>
</tr>
<tr>
<td>Infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulitis-penis (607.2)</td>
<td>2 (.0008)</td>
<td>2 (.0009)</td>
<td>NA</td>
</tr>
<tr>
<td>All complications</td>
<td>287 (.22)</td>
<td>33 (.01)*</td>
<td>476</td>
</tr>
</tbody>
</table>

* P < .001; ** P < .10.
other procedures coded. Various complications occurred during the birth hospitalization, as summarized in Table 1. Overall, there were 287 complications (2.2%) in the circumcised children and 33 (0.01%) in the uncircumcised group. Circumcised children with any complication had significantly longer newborn stays than circumcised children without complications (mean: 2.81 days vs 2.26 days; \(P = .003 \)) although the only single complication associated with an increased newborn stay was “suture penile laceration” (644.1; 7.0 days vs 2.26 days; \(P < .001 \)).

Based on these findings, the aggregated NNH is 476: that is, some form of complication occurs in 1 out of every 476 children who are circumcised. The NNH for each of the separate complications is also displayed in Table 1.

The NNT versus NNH trade-offs, each representing a discrete comparison of a particular benefit and a particular harm, are summarized in Table 2. Overall, 1.14 immediate circumcision-related complications can be expected for every 6 UTIs prevented, and 1.90 complications can be expected for every case of penile cancer prevented.

DISCUSSION

Because circumcision is not a lifesaving procedure,^6^ and its modest medical benefits may be offset by its complications, its indications are discretionary. Parents who opt to circumcise their child for religious or cultural reasons do so appropriately within this discretionary boundary. For those parents seeking objective medical advice regarding the procedure, our trade-off analysis is intended to provide parents and providers with a sense of the relative medical risks and benefits of the procedure.

Our study found an overall complication rate associated with newborn circumcision of approximately .20%, or 1 adversely affected child for every 476 boys circumcised. We believe this estimate to be an accurate reflection of the true complication rate, as it is based on a large and diverse patient sample, and it is consistent with 2 previous studies that reported rates of .19% and .20%^6^,^18^ although it is significantly less than that of another which reported a rate of .60%.^17^ In part, this inconsistency may be accounted for by the method of data collection as some of these studies involved chart reviews that may be more apt to discern minor complications not coded on discharge.

Beyond this summary of the overall complication rate, our analysis also provides separate NNH estimates for different kinds of complications, which is important because the complications clearly are not all of equal consequence, medically or emotionally. Similarly, the value placed on preventing a UTI in an infant or a case of penile cancer in late adult life also are best reported as 2 distinct NNT figures, for they too are not necessarily of equal consequence.

Parents’ subjective weighing of the benefits of prevention and the harm of complications is fundamental to this decision-making process. Accordingly, we did not assign relative weights to the outcomes. Further, we believe that attempts to designate utilities for these outcomes—whether they be based on expert panels or community surveys—would be misguided. The weighing process in this decision should remain individualized and subjective, taking fully into account the parents’ general degree of aversion to risk, and in particular whether the risk arises from either omitted or committed actions. Parents might well have greater feelings of guilt associated with adverse events arising from circumcision, such as needing a penile wound repaired, than from a different adverse and somewhat preventable event, such as a UTI, occurring in uncircumcised boys. This aversion to committed action risk and its associated feelings may counterbalance or outweigh any potential benefits.

Two specific limitations of this study warrant consideration. First, as with any large administrative database study, the records likely contain some

TABLE 2. Trade-off Analysis for Circumcision: Adverse Outcome Prevented per Complication Endured

<table>
<thead>
<tr>
<th>Complication (International Classification of Diseases, Ninth Revision)</th>
<th>Trade-offs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Complications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Endured per Case of UTI Prevented</td>
<td>Number of Complications Endured per Case of Penile Cancer Prevented</td>
</tr>
<tr>
<td>Hemorrhagic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraoperative bleeding (998.1)</td>
<td>.15</td>
<td>1.36</td>
</tr>
<tr>
<td>Hemorrhage control (399.8)</td>
<td>.01</td>
<td>.08</td>
</tr>
<tr>
<td>Suture of artery, vein, vessel (393.0, 393.1, 393.2)</td>
<td>.005</td>
<td>.64</td>
</tr>
<tr>
<td>Total</td>
<td>.16</td>
<td>1.55</td>
</tr>
<tr>
<td>Injury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penile repair (644.9)</td>
<td>.01</td>
<td>.18</td>
</tr>
<tr>
<td>Suture penile laceration (644.1)</td>
<td>.01</td>
<td>.18</td>
</tr>
<tr>
<td>Wound-penis (878.0, 878.1)</td>
<td>.002</td>
<td>.02</td>
</tr>
<tr>
<td>Reconstruction of penis (644.4)</td>
<td>.001</td>
<td>.007</td>
</tr>
<tr>
<td>Total</td>
<td>.03</td>
<td>.27</td>
</tr>
<tr>
<td>Infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulitis-penis (607.2)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Total</td>
<td>.19</td>
<td>1.90</td>
</tr>
</tbody>
</table>
incorrect or missing codes. Because it is both common and reimbursable, circumcisions were likely to be accurately coded in the database when they were performed. However, at first glance, our reported circumcision rate of 37% may seem low. Unpublished estimates suggest circumcision rates of approximately 50% for the state of Washington. However, our data collection method would only capture children who were circumcised during their birth hospitalization and not those subsequently circumcised as outpatients. Nevertheless it is possible that circumcisions were performed but not coded as was possibly the case with the 1 uncircumcised boy for whom “penis wound” was coded. Misclassifications of this kind would have biased our findings toward the null. We attempted to control for other misclassifications, either other procedures performed but not coded as may have been the case for children with interoperative bleeding in the absence of other documented procedures or miscoding of complications, by using a comparison group of “uncircumcised” children. For misclassifications then to have meaningfully impacted our results, they would have to have occurred a greater proportion of the time in one group versus the other. There is no a priori reason to believe this to be the case.

Second, because our sample was limited to the immediate postbirth observation period, we did not capture the very rare but serious and delayed complications associated with circumcisions (eg, necrotizing fasciitis, cellulitis). Our analysis also did not capture the less serious but far more common “complications,” such as the healthy but unsightly healing of a circumcision that often unnerves parents, or a less than ideal cosmetic result, either of which may lead parents to seek medical attention. Our results therefore represent conservative estimates of complications attributable to circumcision.

Overall, routine newborn circumcision appears to be a relatively safe procedure. It is not without some risks, however, and these risks do not seem to be mitigated by the hands of more experienced physicians. Given that these risks then are likely to remain, we hope that the methods we used to present both the risks and the benefits as trade-offs are both meaningful and helpful.

ACKNOWLEDGMENTS

We thank Frederick P. Rivara, MD, MPH, for his thoughtful review and to Alta Lyn Bassett for her assistance with manuscript preparation.

REFERENCES

15. Van Howe RS, Cold CJ. Advantages and disadvantages of neonatal circumcision. JAMA. 1997;278:203
A Trade-off Analysis of Routine Newborn Circumcision
Dimitri A. Christakis, Eric Harvey, Danielle M. Zerr, Chris Feudtner, Jeffrey A. Wright and Frederick A. Connell
Pediatrics 2000;105;246

Updated Information & Services
including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/105/Supplement_2/246

References
This article cites 29 articles, 11 of which you can access for free at:
http://pediatrics.aappublications.org/content/105/Supplement_2/246.f ull#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Fetus/Newborn Infant
http://classic.pediatrics.aappublications.org/cgi/collection/fetus:newb orn_infant_sub
Circumcision
http://classic.pediatrics.aappublications.org/cgi/collection/circumcision_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
https://shop.aap.org/licensing-permissions/

Reprints
Information about ordering reprints can be found online:
http://classic.pediatrics.aappublications.org/content/reprints

Pediatrics is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since . Pediatrics is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2000 by the American Academy of Pediatrics. All rights reserved. Print ISSN: .
A Trade-off Analysis of Routine Newborn Circumcision
Dimitri A. Christakis, Eric Harvey, Danielle M. Zerr, Chris Feudtner, Jeffrey A. Wright and Frederick A. Connell
Pediatrics 2000;105;246

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/105/Supplement_2/246