Hidden Threats: Lead Poisoning From Unusual Sources

Timothy F. Jones, MD*‡; William L. Moore, MD‡§; Allen S. Craig, MD‡¶; Ronald L. Reasons‡; and William Schaffner, MD§¶

ABBREVIATIONS. BLL, blood lead level; CDC, Centers for Disease Control and Prevention; CPSC, US Consumer Product Safety Commission.

It has been estimated that 890,000 children in the United States have blood lead levels (BLLs) of 10 µg/dL, currently defined as a level of concern by the Centers for Disease Control and Prevention (CDC). The proportion of US children aged 1 to 5 years with BLLs ≥10 µg/dL has decreased from 88.2% during the period from 1976 through 1980, to 4.4% during the period from 1991 through 1994. Although several risk factors have been identified, lead-based paint is currently the most important source of lead exposure for children in the United States. As screening, education, and abatement programs result in decreased numbers of persons with lead poisoning, health care providers must remain alert for new or unusual sources of potential exposure in children.

CASE REPORTS

Case 1

A 2-year-old child was noted to have a BLL of 43 µg/dL on screening during a routine well-child examination. A physical examination was normal and the history indicated no obvious risk factors for lead poisoning. The health department thoroughly investigated all settings frequented by the child, and identified no potential sources of lead exposure to which the child had access. The child’s mother, however, suspected the cause was a necklace that had been given to him approximately 10 weeks earlier. He had worn it on 3 days, and was noted to have the beads in his mouth frequently when wearing the necklace. The necklace had 5 metallic cubes stamped with letters on a string. It had been imported from China and had been purchased at a large chain department store. The necklace was removed from the child, and approximately 3 weeks later the child’s BLL had dropped to 24 µg/dL without specific treatment.

A bead from the child’s necklace was tested and found to have 20,200 mg/kg of lead. Subsequently, several other imported necklaces were tested, and found to have levels of lead as high as 62,000 mg/kg. The CPSC was notified.

Case 2

An 11-month-old child was found to have a BLL of 43 µg/dL on routine screening. Evaluation of the home identified no obvious source of exposure to lead. Discussion with the parents revealed that they had applied “surma” to the child’s eyes daily for 5 months to “strengthen them.” Surma is a fine powder that resembles mascara. It is applied to the conjunctival surface of the eyelid for cosmetic or medicinal purposes in many Asian countries. It had been brought from India by the child’s grandmother. Testing of the powder applied to this child’s eyes found it to be 25% lead by weight (252,000 mg/kg). Application of the material was discontinued, and the child’s BLL dropped to 23 µg/dL within 8 weeks.

DISCUSSION

Over the past 2 decades, mean BLLs in children in the United States have dropped substantially. Concurrently, evidence of the adverse health effects of low-level lead exposure has accumulated and the BLL considered a matter of concern by the CDC has been lowered to 10 µg/dL. At present, the principal sources of lead exposure for children in the United States are paint dust, soil, and water. Although these well-recognized sources of lead exposure are being eliminated, new or more obscure sources may continue to provide risk and should be suspected in cases of lead poisoning.

Although children often put necklaces in their mouths, oral contact with children’s jewelry has not, to our knowledge, previously been implicated as a source of lead intoxication. Subsequent to this case, public health authorities in Utah identified a 9-year-old child with a BLL of 18 µg/dL and no identified source of lead exposure other than frequent mouthing of a similar imported necklace (personal communication, Ronald Marsden, Utah Department of Health, December 10, 1998). In 1994 the United States imported $569 million worth of costume jewelry, with China, South Korea, and Taiwan being the leading suppliers. In this case, the CPSC did not take regulatory action because the necklace in question had not been intended for use by children in an age group likely to mouth jewelry. The CPSC did request manufacturers to voluntarily remove unnecessary lead from such products. It is important that physicians report previously unsuspected sources of lead poisoning to their local health departments so that such information can be forwarded to the CPSC and other agencies as appropriate.

Surma has been used in Asia for medical and cosmetic purposes for centuries. The name derives from an Urdu word for antimony, although this major constituent has recently been replaced with...
Table 1 lists some unusual sources of lead toxicity that have been reported in the medical literature.7–9,11–18 Anecdotal reports have also identified sources such as imported or homemade medicines, foods, or cosmetics that might lead to lead poisoning.7–9 Among persons of Asian and Middle Eastern origin,3,7–9 use of lead-containing eye cosmetics remains common. Studies suggest that use of lead-containing eye cosmetics remains common among persons of Asian and Middle Eastern origin.3,7–9 Given the large number of ethnic groups present in this country, it is not unexpected that instances of exposure to folk remedies and imported or homemade medicines, foods, or cosmetics might lead to lead poisoning.3,7–9,11–18

Table 1. Some Potential Unusual* or Unexpected Sources of Lead Toxicity

<table>
<thead>
<tr>
<th>Material</th>
<th>Source</th>
<th>Use</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folk medicines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azarcon, greta</td>
<td>Mexico</td>
<td>Medication for gastrointestinal symptoms</td>
<td>7,8</td>
</tr>
<tr>
<td>Paylooa</td>
<td>Southeast Asia</td>
<td>Medication for fever, rash</td>
<td>8</td>
</tr>
<tr>
<td>Surma, kohl, kajal</td>
<td>India, Pakistan, other Asian and Middle Eastern countries</td>
<td>Medicinal or decorative cosmetic for eye, skin</td>
<td>3,7–9</td>
</tr>
<tr>
<td>Ghasard, bala goli, kandu</td>
<td>India</td>
<td>Medication for gastrointestinal symptoms</td>
<td>7</td>
</tr>
<tr>
<td>Teething powder (Sawott, Cebagin)</td>
<td>Saudi Arabia</td>
<td>Pain reliever</td>
<td>11</td>
</tr>
<tr>
<td>Folk remedy of powdered rock</td>
<td>United Arab Emirates</td>
<td>Relief of colic</td>
<td>11</td>
</tr>
<tr>
<td>Calcium supplements from bonemeal,</td>
<td>United States</td>
<td>Dietary supplement</td>
<td>12</td>
</tr>
<tr>
<td>dolomite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flour</td>
<td>West Bank, Israel</td>
<td>Food product contaminated during milling</td>
<td>13</td>
</tr>
<tr>
<td>Candy</td>
<td>Mexico</td>
<td>Food, packaged in lead-containing ceramic jar</td>
<td>14</td>
</tr>
<tr>
<td>Lozeena</td>
<td>Iraq</td>
<td>Food coloring, orange powder</td>
<td>14</td>
</tr>
<tr>
<td>Pottery</td>
<td>Various</td>
<td>Storing food or water before</td>
<td>15,16</td>
</tr>
<tr>
<td>Metal urns/kettles</td>
<td>Various</td>
<td>boiling water before consumption</td>
<td>11</td>
</tr>
<tr>
<td>Ingestion of lead foreign bodies</td>
<td>Various</td>
<td>Accidental exposure</td>
<td>17</td>
</tr>
<tr>
<td>(fishing sinkers, clothing</td>
<td>Various</td>
<td>Items not intended for consumption</td>
<td>18</td>
</tr>
<tr>
<td>accessories, bullets, curtain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weights, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The most common sources of lead exposure include lead-containing paint, soil/dust, leaded gasoline, plumbing leachate (water), occupational exposure, and hobbies using lead-containing materials.

REFERENCES

ACKNOWLEDGMENTS

We thank Dina Mishu, MD, Robert V. Taylor, Jr, DVM, MPH, and Ron Marsden for assistance with data collection; Dori Reissman, MD, MPH, of the CDC for consultation during the investigation; and Laura Fehrs, MD, of the CDC for her thoughtful review of the manuscript.
Updated Information & Services
including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/104/Supplement_6/1223

References
This article cites 17 articles, 2 of which you can access for free at:
http://pediatrics.aappublications.org/content/104/Supplement_6/1223.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
- **Environmental Health**
 http://classic.pediatrics.aappublications.org/cgi/collection/environmental_health_sub
- **Lead**
 http://classic.pediatrics.aappublications.org/cgi/collection/lead_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
https://shop.aap.org/licensing-permissions/

Reprints
Information about ordering reprints can be found online:
http://classic.pediatrics.aappublications.org/content/reprints

Pediatrics is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. Pediatrics is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 1999 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-3058.
Hidden Threats: Lead Poisoning From Unusual Sources
Timothy F. Jones, William L. Moore, Allen S. Craig, Ronald L. Reasons and William Schaffner

Pediatrics 1999;104;1223

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/104/Supplement_6/1223