ABSTRACT. Background. Experimental undernutrition in animals, during the critical brain development period, produces retardation of brain growth as well as a number of different morphologic and functional abnormalities in neurons, mainly in the dendritic synaptic apparatus. These alterations are the cause of the poor neurointegrative development that occurs in experimental malnutrition. Severe malnutrition during early postnatal life in humans is known to produce similar neurointegrative disorders as well as mental retardation, but there are very few studies describing the morphology of the dendritic apparatus in infants suffering from this condition.

Objective. To study the dendritic spine density and morphology in dendrites from cortical neurons in infants dying from severe malnutrition.

Methodology. Brain sections from the somesthesic, motor, and occipital cortical areas of 13 infants who died of severe malnutrition and 7 eutrophic infants who died of other causes were studied by means of the rapid Golgi method. Apical dendritic spines from neurons of the fifth cortical layer were studied and counted in all sections.

Results. Apical dendrites were significantly shorter in malnourished infants than in the control group (581.54 ± 54.32 µm in severe malnutrition vs 846.3 µm in normal infants). The number of dendritic spines per dendrite was also significantly diminished (185.3 ± 36.1 in malnourished vs 374.3 ± 41.6 in eutrophic infants). There were marked morphologic abnormalities in the dendritic spines of infants dying of severe malnutrition that were classified as dysplastic.

Conclusions. Short apical dendrites, fewer spines, and dendritic spine abnormalities occur in severe infant malnutrition. These anatomic anomalies might be related to the neuropsychological deficits that occur in these children. Pediatrics 1999;104(2). URL: http://www.pediatrics.org/cgi/content/full/104/2/e21; dendrites, dendritic spines, malnutrition.

ABBREVIATIONS. MI, malnourished infants; NI, normal infants.

Dendritic Spine Pathology in Infants With Severe Protein-Calorie Malnutrition

Luis Benítez-Bribiesca, MD*; Irma De la Rosa-Alvarez, MD, MSc‡; and Armando Mansilla-Olivares, MD, PhD§

Unde

Acknowledgments: The authors are grateful to the following people: a) Mónica Sánchez and María Luisa García, MD, for assistance with the histologic analysis; b) Viviana páEZ, MD, for assistance with the histologic photography; and c) the Clinical Research Committee of the Hospital Infantil Federico Gómez (Mexico City) for providing the tissue samples.

METHODS

Cases were selected from the pathology department of the Hospital Infantil Federico Gómez (Mexico City) with the following criteria: a) diagnosis of severe protein-calorie malnutrition, with a body weight loss of 30% or more; b) a time after death of no longer than 12 hours and body kept in refrigeration; c) no clinical or autopsy diagnosis of any meningeval or brain pathology (meningitis, encephalitis etc); d) macroscopically well-preserved brain tissue; e) absence of congenital anomalies, and f) age below 24 months. Thirteen cases of both sexes whose ages ranged from 8 to

Received for publication Feb 1, 1999; accepted Mar 18, 1999.
Reprint requests to (L.B.B.) Oncological Research Unit, Oncology Hospital, National Medical Center, Ave Cuauhtémoc 330, 06725 México, Distrito Federal, México. E-mail: ibenitez@starinet.net.mx

PEDIATRICS (ISSN 0031 4005). Copyright © 1999 by the American Academy of Pediatrics.
24 months were finally included in our study. Seven controls were selected from infant deaths arriving at the pathology department of the aforementioned hospital with the following criteria: a) eutrophic infants of normal weight; b) age matched (8–24 months of age); c) no meningeal or brain pathology; d) no congenital anomaly; e) well-preserved brain tissue, and f) no more than 12 hours postmortem. (All autopsies were performed after obtaining written permission for a complete postmortem including brain).

Sections from the somesthetic, motor, and occipital areas from freshly obtained brains measuring approximately 1 cm³ were processed with the rapid Golgi silver chromate method (Ramón y Cajal and de Castro) as modified by Marín-Padilla.21,22 All procedures were performed in the dark. Stained blocks were then dehydrated in the routine alcohol-xylene series and embedded in low-melting paraffin. Blocks were cut in a sliding microtome at 150 to 200 μm, deparaffinized in xylene and soaked in clove oil for 20 to 30 minutes for clearing. Sections were put on slides and covered in Damar resin with cover slides. Microscopic examination was performed on a Reichert Young Polysvar transmitted light microscope with the aid of an optical grid (1.0 μm) for measurements.

Microscopy

Neurons from the fifth cortical layer were selected only if they were well-impregnated and had long apical dendrites. Ten pyramidal cells from each cortical area sampled were studied. The dendrite was followed from the emergence of the neuron to the first bifurcation at the second cortical layer. The length of the dendrite was measured focusing segments of about 100 μm and the amount of branching was estimated (not counted). Dendritic spines were counted at 50 μm intervals beginning at the emergence of cell body to the first bifurcation of the dendrite.

In all, 130 dendrites from the cases and 70 from controls were processed with the rapid Golgi silver chromate method (Ramón y Cajal and de Castro) as modified by Marín-Padilla.21,22 All procedures were performed in the dark. Stained blocks were then dehydrated in the routine alcohol-xylene series and embedded in low-melting paraffin. Blocks were cut in a sliding microtome at 150 to 200 μm, deparaffinized in xylene and soaked in clove oil for 20 to 30 minutes for clearing. Sections were put on slides and covered in Damar resin with cover slides. Microscopic examination was performed on a Reichert Young Polysvar transmitted light microscope with the aid of an optical grid (1.0 μm) for measurements.

RESULTS

The anatomic differences of the apical dendrites in malnourished infants (MI) and the control group of normal infants (NI) were striking in the three cortical areas studied. The average length of the apical dendrites was 846.43 μm ± 46.09 in NI, whereas in MI the average was 581.54 μm ± 54.32 (P < .001) (Fig 1). The number of spines per dendrite in NI was 347.3 μm ± 41.6, while in MI, it was 185.3 μm ± 36.1 (P < .001) (Fig 2). Dendritic spine counts in each cortical area studied also showed marked differences. The motor area in NI was 345 μm ± 26.8 in NI vs 183.7 μm ± 29.4 in MI (P < .001); in the somestic area, 372.7 μm ± 36.5 in NI vs 180.7 μm ± 44.6 in MI (P < .001); and in the occipital area, 323.9 μm ± 44.5 in NI vs 191.4 μm ± 31.7 in MI (P < .001). The distribution of the apical spines was also quite different. Along the first 250 μm from the neuronal body, the number of spines was similar in both groups. In contrast, in the distal segment, there was a significant reduction in all the cortical samples from the undernourished group (Fig 3). Moreover, taking into account an equivalent proportion of distal segments, it was evident that the lower number of spines counted was not dependent on the shorter length of the dendrite found in MI. There were also some dendritic segments denuded of spines.

The morphology of spines showed remarkable changes mainly in the distal portion of the dendrite. Some had long stems, others were clubbed, and even others shared fused and curled stems (Fig 4). We applied the term dysplastic spines to describe these abnormal dendritic processes instead of using the alternative term dysgenic spines, previously applied by Purpura to the abnormal dendritic morphology reported in other types of mental retardation. The term dysplastic seems more appropriate for naming the abnormal morphology found in these spines, because it refers to altered formation and not to a deranged genetic program. This study demonstrates...
the following three specific and different kinds of dendritic abnormalities in children who died from severe protein-calorie malnutrition: 1) shortening of the apical dendrite; 2) a decreased number of dendritic spines in the distal half; and 3) presence of abnormal or dysplastic spines.

DISCUSSION

Our results show that in early protein calorie-malnutrition during the critical brain development period (first 24 months of age), there are severe alterations in the dendritic spine apparatus of neurons from the fifth cortical layer. The changes comprise a shortening of the apical dendrite, a significant decrement of the number of spines and the presence of abnormal forms that we have defined as dysplastic spines. These abnormalities were in the proximal 250 μm of the dendrite, but in the distal portion they were particularly striking. It is known that the development and arborization of apical dendrites from the brain cortex continues to progress postnatally and is completed around the second year of age. It is therefore likely that the proximal portion of the dendrite and the corresponding spines developed before the onset of nutritional deprivation, probably in fetal life, but that the distal portion developed later when the lack of appropriate nutrition interfered with normal growth. Numerous experimental studies in
mammals have shown that protein calorie deprivation produces similar changes in the dendritic-synaptic apparatus when induced during the critical development period of the brain cortex. Dobbing and Sands showed diminished dendritic arborizations of neurons of the fifth cortical layer in experimental animals with nutritional deprivation. Salas et al. found thinner dendrites and diminished spine numbers in neurons from the occipital cortex. Díaz-Cintra et al. have demonstrated the effects of parenteral protein deprivation on the postnatal development of granular cells in fascia dentata.

The abnormalities of the dendritic apparatus in humans have been described mainly in mental retardation, chromosomal abnormalities and in senile dementia, but not in severe malnutrition. Marín-Padilla found severe abnormalities in the cerebral cortex, principally of the axospinodendritic synapsis, in human chromosomal aberrations, and Purpura described dendritic spine dysgenesis in mental retardation without chromosomal anomalies. Previous investigations in experimental animals show that severe protein calorie malnutrition during the first stages of postnatal life produces remarkable changes in the development of the cortical dendritic apparatus. Early undernutrition may also produce functional abnormalities in the central nervous system, because the development of neuro-
spine changes associated with early malnutrition, similar to those described in mental retardation of different causes. Although it is difficult at present to demonstrate that spine pathology is the cause rather than a coincidental relationship with mental retardation, it is tempting to assume that these morphologic changes could represent, at least partially, the structural basis of the synaptic dysfunction associated with early severe malnutrition. Hence, the severe neurointegrative disorders described in malnourished infants could be a consequence of the abnormalities in the dendritic (synaptic) apparatus described in this study.

Under normal conditions, spines are able to regulate calcium interstitial levels, avoiding the sudden influx of this ion into neighboring dendrites, which could be extremely toxic. In fact, this abnormality especially in the distal segments produces an inability to manage relatively high and sudden increments in intracellular calcium concentrations, leading to the inhibition of neuronal plasticity, and eventually to neurolysis. Dysplastic spines might also be dysfunctional and could thus trigger the destruction of parent dendrites.

It is also interesting to point out that neurons from different areas in the central nervous system do not respond equally to the same kind of malnutrition. For instance, Andrade et al in 1995 demonstrated that under long-term protein deprivation, CA3 pyramidal neurons, principally fiber-CA3 synapses, and dendritic trees of the dentate granular cells show a remarkable decrease in the total number of dendritic arborizations per cell, as well as loss of spines, without evidence of regrowth. In contrast, other authors under similar conditions describe that neither the dendritic features nor the number of spines undergo any change. Nevertheless, Cadete-Leite et al have demonstrated that neurons in the dentate gyrus have the capability to increase the number of their dendritic segments, as a compensatory response of the surviving neurons to the death of their close neighbors. Supporting this observation, Horner in 1993 observed that lengthy periods of a low-protein diet produce an increment in spine density around the proximal and distal segment of dendrites, markedly increasing the area of synaptic contacts. But if we take into account that the total dendritic length of granule cells decreases as a result of protein deprivation, the number of spines per granule cell is not likely to be increased and may even be reduced. In experimental animals, rehabilitation from malnutrition does not lead to an improvement of the morphologic, degenerative, or physiopathologic changes it provokes. The timing of onset of protein deprivation is a determining factor of its effects. The maximal vulnerability is during the brain growth spurt period, which takes place in early postnatal life. In humans, little is known about the neuropathology of early malnutrition and the associated physiopathologic changes have been studied indirectly. Maternal protein-energy malnutrition does not produce permanent neurologic or intellectual deficit in the fetus because brain growth is unaffected. In the first 24 postnatal months, however, malnutrition exerts the strongest neurologic damage. Infants undernourished in the postweaning period manifest neurologic and intellectual deficit. The dendritic spine abnormalities described in this study, particularly the diminished density and the presence of dysplastic forms of this structure, are the consequence of a precocious nutritional input and could constitute the anatomic basis of the poor neuropsychologic development that these infants display. It has been shown in some studies that after nutritional rehabilitation, the motor and mental development of undernourished children is equal to that of the control group. It is known, however, that after severe undernutrition in the first postnatal months there are certainly irreparable cognitive deficits. So far there are no studies to demonstrate whether the dendritic spine abnormalities associated with severe early malnutrition in humans can be repaired by proper nutritional rehabilitation or whether they persist throughout life.

ACKNOWLEDGMENT

We thank Dr Pedro Valenzuela, Chief, Department of Pathology, Hospital Infantil Federico Gómez, Mexico City, for his cooperation in the collection of brain samples.

REFERENCES

17. Castellano C, Oliveira A. Early malnutrition and postnatal changes in...
18. Cravio ti J, Delicardie E, Birch H. Nutrition, growth and neurointegra-
38:319–333
20. Cravio ti J, Arrieta M. Efecto de la desnutricion sobre el desarrollo
21. Ramón y Cajal S, De Castro F. Elementos de Técnicas Micr ografia del
22. Marin-Padilla M. Number and distribution of the apical dendritic
spines of the layer V pyramidal cells in man. J Comp Neurol. 1967;131:
475–490
23. Salas M, Díaz S, Nieto A. Effects on neonatal food deprivation on
cortical spines and dendritic development of the rat. Brain Res. 1973;73:
139–144
Effects of parenteral protein deprivation on postnatal development of
25. Manocha SL. Malnutrition and Retarded Human Development.
Springfield, IL: Charles C Thomas; 1972:625
26. Telang S, Fuller G, Wiggins R, Enna SJ. Early undernutrition and(3H)
27. Cordero ME, D’Acuna E, Benveniste S, Prado R, Núñez JA, Colombo M.
Dendritic development in neocortex of infants with early postnatal life
and intrastructural study of rat cerebral cortex. Exp Neurol. 1974;43:
464–475
29. Aoki Ch, Siekevitz P. Plasticity in brain development. Sci Am. 1988;259:
31–42
Quantitative dendritic and spine analyses of speech cortices: a case
31. Shepherd GM. The dendritic spine: a multifunctional integrative unit.
32. Seil FJ, Eckenstein FP, Reier PJ. Induction of dendritic spine prolifera-
tion by an astrocyte secreted factor. Exp Neurol. 1992;117:85–89
33. Koch C, Zador A. The function of dendritic spines: devices subserving
1993;13:413–422
34. Becker EL, Jagadha V. Structural adaptation of dendrites on the human
brain during development and disease. In: Petit TL, Ivy GO, eds. Neural
35. Wisniewski KE, Segan SM, Miezejeski CM, Sersen EA, Rudelli RD. The
Fra (X) syndrome: neurological electrophysiological, and neuropatho-
36. Mehrain P, Yamada M, Tarnowska-Dzidusko E. Quantitative study on
dendrites and dendrites spines in Alzheimer’s disease and senile de-
Raven Press; 1975:12:453–458
fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad
Sci USA. 1997;94:5401–5404
39. Cravio ti J, Delicardie E. Mental development and intelligence in school
1971;59:317–335
40. Segal M. Dendritic spines for neuroprotection: a hypothesis. TINS.
1995;18:468–471
41. Harris KM, Kater SB. Dendritic spines: cellular specializations impart-
ing both stability and flexibility to synaptic function. Annu Rev Neurosci.
1994;17:341–371
42. Andrade JP, Madeira MD, Paula-Barbosa MM. Evidence of reorgani-
tion in the hippocampal mossy fiber synapses of adult rats rehabilitated
43. Cadete-Leite A, Tavares MA, Uylings HBM, Paula-Barbosa MM. Gran-
ule cell loss and dendritic regrowth in the hippocampal dentate gyrus of
the rat after chronic alcohol consumption. Brain Res. 1988;473:1–14
44. Cadete-Leite A, Tavares MA, Alves MC, Uylings HBM, Paula-Barbosa
MM. Metric analysis of hippocampal granule cell dendritic trees after
45. Horner CH. Plasticity of the dendritic spine. Prog Neurobiol. 1993;41:
281–321
46. Andrade JP, Castanheira-Vale AJ, Pas-Dias PG, Madeira MD, Paula-
Barbosa MM. The dendritic trees of neurons from the hippocampal
formation of protein-deprived adult rats: a quantitative Golgi study. Exp
Brain Res. 1996;109:419–433
47. Andrade JP, Madeira MD, Paula-Barbosa MM. Effects of long-term
malnutrition and rehabilitation on the hippocampal formation of the
48. Quirk GJ, Mejía WR, Hesse H, Su H. Early malnutrition followed by
nutritional restoration lowers the conduction velocity and excitability of
the corticospinal tract. Brain Res. 1995;670:277–282
49. Stein Z, Zusser M, Saenger G, Marolla F. Nutrition and mental
performance: prenatal exposure to the Dutch famine of 1944–1945
seems not related to mental performance at age 19. Science. 1972;178:
708–713
51. Lloyd-Still JD, Hurwitz K, Wolff PH, Schwachman H. Intellectual de-
velopment after severe malnutrition in infancy. Pediatrics. 1974;54:
306–311
52. Robertson CMT, Etches PC, Kyle JM. Eight-year school performance
and growth of preterm, small for gestational age infants: a comparative
study with subjects matched for birth weight or for gestational age. J
Pediatr. 1990;116:19–26
Sci Am. 1996;274:26–31
Dendritic Spine Pathology in Infants With Severe Protein-Calorie Malnutrition
Luis Benitez-Bribiesca, Irma De la Rosa-Alvarez and Armando Mansilla-Olivares

Pediatrics 1999;104;e21

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/104/2/e21