Breastfeeding Effects on Intelligence Quotient in 4- and 11-Year-Old Children

Sandra W. Jacobson, PhD*,‡,§; Lisa M. Chiodo, MA§; and Joseph L. Jacobson, PhD‡,§

ABSTRACT. Objective A study of preterm children found an IQ advantage among those who were breastfed as infants after controlling for maternal social class and educational status. However, this advantage needs to be examined in light of other maternal characteristics, such as maternal IQ and parenting skills, which were not measured in that study and which have been found to be related to breastfeeding.

Methodology. IQ was assessed in 323 children at 4 years of age on the McCarthy Scales of Children’s Abilities and the Peabody Picture Vocabulary Test-Revised and in 280 children on the Wechsler Intelligence Test for Children-Revised at 11 years of age.

Results. Children who were breastfed in infancy had significantly higher scores on IQ tests at both ages, even after adjusting for social class and education, confirming the earlier findings and extending them to a predominantly full-term sample. However, the effect of breastfeeding was no longer significant after adjusting for maternal IQ assessed on the Peabody Picture Vocabulary Test-Revised and for parenting skills assessed on the Home Observation for Measurement of the Environment. Significant relations between breastfeeding and Woodcock Reading Achievement scores at 11 years were also reduced to nonsignificant levels after the inclusion of maternal IQ and the Home Observation for Measurement of the Environment.

Conclusions. These findings suggest that the observed advantage of breastfeeding on IQ is related to genetic and socioeconomic factors rather than to the nutritional benefits of breastfeeding on neurodevelopment. They should not be interpreted as detracting from the medical benefits associated with breastfeeding.

ABBREVIATIONS. WISC-R, Wechsler Intelligence Scale for Children-Revised; SES, socioeconomic status; PPVT-R, Peabody Picture Vocabulary Test-Revised; PCB, polychlorinated biphenyls; PBB, polychlorinated biphenyls; GCI, General Cognitive Index; HOME, Home Observation for Measurement of the Environment.
137 black inner city mothers and 50 predominantly white lower income mothers receiving nutritional supplemental support from Women, Infants, and Children (WIC). Although unrelated to maternal depression, stress, and social support, the decision to breastfeed and the duration of breastfeeding were related positively to maternal verbal IQ on the Peabody Picture Vocabulary Test-Revised (PPVT-R) and ego development (Loevinger Sentence Completion Test) in both samples. An earlier study, comparing breastfeeding and bottlefeeding mothers, found also that mothers who breastfed had higher verbal IQ scores on the PPVT-R, provided a more enriched home environment (Home Observation for Measurement of the Environment (HOME) Inventory), and were less authoritarian. Similar results were reported in an earlier New Zealand study of 1037 children.

The present study examined the degree to which differences in maternal IQ and quality of intellectual stimulation may account for the reported association between breastfeeding and childhood IQ. We extend the IQ findings to 11-year IQ and achievement scores and discuss our 4- and 11-year data in light of additional findings by Lucas et al.

METHODS

Subjects

The sample is made up of 323 white, predominantly middle-class children (172 males and 151 females) at 4 years, and 280 children (148 males and 132 females) seen again at 11 years. These children are participating in a prospective longitudinal study on the effects of prenatal exposure to polychlorinated biphenyls (PCBs), a ubiquitous environmental contaminant. The sample of 236 (75.4%) of 313 children recruited in 1980 through 1981 when all women consuming at least 11.8 kg of Lake Michigan sportsfish.30 All women consuming at least 11.8 kg of Lake Michigan fish over a 6-year period were invited to participate in the study. A small proportion (4.6%) of those who had not consumed these fish were also recruited and constituted 22.7% of the final sample. As a check on whether the women who were invited to participate were similar demographically to the women who were not recruited, a demographic comparison group was selected by matching each potential participant with the next woman whose screening interview followed her own. This procedure assured a one-point greater than the highest observed value, as recommended by Lucas et al. Formed by recoding seven values into 1994, the simpler measure, weeks of breastfeeding; participants were slightly older than nonparticipants (mean age = 31.2 and 29.5; \(P < .05 \), respectively). Informed consent was obtained from the mothers in the hospital and again at 4 and 11 years of age as well as assent from the children at 11 years.

Procedure

The dichotomous variable breastfed/nonbreastfed shown in Tables 1 and 2 was constructed by dividing the sample between those who reported breastfeeding versus those who chose not to breastfeed. Detailed data on infant feeding patterns were collected at 2, 4, 5, and 7 months from the Lake Michigan cohort, so that the infant could be classified in one of five categories ranging from exclusively breastfed to exclusively bottle-fed. Because these detailed estimates were correlated highly with the number of weeks of breastfeeding, participants were slightly older than nonparticipants (mean age = 31.2 and 29.5; \(P < .05 \), respectively). Informed consent was obtained from the mothers in the hospital and again at 4 and 11 years of age as well as assent from the children at 11 years.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Not Breastfed (N = 85)</th>
<th>Breastfed (N = 237)</th>
<th>t or (\chi^2)</th>
<th>Not Breastfed (N = 72)</th>
<th>Breastfed (N = 207)</th>
<th>t or (\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
<td>SD</td>
<td>(t) or (\chi^2)</td>
<td>Mean</td>
</tr>
<tr>
<td>Socioeconomic status</td>
<td>36.2</td>
<td>11.0</td>
<td>41.0</td>
<td>12.7</td>
<td>-3.1**</td>
<td>39.2</td>
</tr>
<tr>
<td>Maternal age</td>
<td>26.2</td>
<td>5.3</td>
<td>26.9</td>
<td>4.4</td>
<td>-1.2</td>
<td>26.3</td>
</tr>
<tr>
<td>Education (y)</td>
<td>12.8</td>
<td>1.9</td>
<td>13.6</td>
<td>2.0</td>
<td>-3.2***</td>
<td>12.9</td>
</tr>
<tr>
<td>Verbal IQ (PPVT-R)</td>
<td>92.9</td>
<td>15.1</td>
<td>100.3</td>
<td>14.5</td>
<td>-4.0****</td>
<td>93.3</td>
</tr>
<tr>
<td>HOME score</td>
<td>46.2</td>
<td>4.4</td>
<td>48.3</td>
<td>4.1</td>
<td>-3.9****</td>
<td>46.4</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>3490.6</td>
<td>542.1</td>
<td>3612.8</td>
<td>525.1</td>
<td>-1.6</td>
<td>3506.4</td>
</tr>
<tr>
<td>Gestational age at birth (wk)</td>
<td>39.9</td>
<td>2.3</td>
<td>40.1</td>
<td>1.8</td>
<td>-0.8</td>
<td>40.2</td>
</tr>
<tr>
<td>Parity</td>
<td>2.2</td>
<td>1.5</td>
<td>2.0</td>
<td>1.0</td>
<td>1.4</td>
<td>2.3</td>
</tr>
<tr>
<td>Sex of infant (% males)</td>
<td>52.9</td>
<td>35.2</td>
<td>53.2</td>
<td>0.0</td>
<td></td>
<td>51.4</td>
</tr>
</tbody>
</table>

Values are means (SD) except for sex of infant.

* \(P < .05 \); ** \(P < .005 \); *** \(P < .001 \); **** \(P < .0001 \).
TABLE 2. IQ at 4 and 11 Years by Breastfeeding Group

<table>
<thead>
<tr>
<th></th>
<th>Mean (SD)</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Breastfed</td>
<td>Breastfed</td>
</tr>
<tr>
<td>4 year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McCarthy GCI</td>
<td>100.9 (14.0)</td>
<td>105.3 (14.5)</td>
</tr>
<tr>
<td>PPVT-R (child)</td>
<td>98.0 (15.2)</td>
<td>104.4 (13.6)</td>
</tr>
<tr>
<td>11 year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WISC-R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal IQ</td>
<td>102.9 (13.1)</td>
<td>107.8 (13.5)</td>
</tr>
<tr>
<td>Performance IQ</td>
<td>104.1 (11.9)</td>
<td>107.7 (13.3)</td>
</tr>
<tr>
<td>Full scale IQ</td>
<td>103.7 (12.0)</td>
<td>108.5 (12.9)</td>
</tr>
</tbody>
</table>

* P < .05; ** P < .01; *** P < .0001.

Stanford-Binet test. Interobserver reliability for the items in the McCarthy Scales requires discretionary judgment ranged from 94% to 100% (median = 99%). There were no significant differences among the examiners in the scores obtained by the children they tested (P > .15 in all cases). The McCarthy Scales were supplemented by the PPVT-R, a brief vocabulary recognition test, that is correlated strongly with the WISC Vocabulary subtest (median r = .69; the WISC Verbal Scale, median r = .66; and the Full Scale WISC, median r = .64).

Each child was tested again individually at home at a mean age of 11.0 (SD = 0.2) on the WISC-R, the spelling and arithmetic subtests of the Wide Range Achievement Test-Revised,68 and the word and passage comprehension subtests of the Woodcock Reading Mastery Tests-Revised. Reading comprehension was computed as the average of the scores for word and passage comprehension. None of the examiners were aware of the child's breastfeeding history. The interexaminer reliability in recording the children's response times (r) ranged from 0.98 to 1.00.

The mother was interviewed in an adjacent room by a second examiner at the 4- and 11-year visits. SES was assessed using the Hollingshead Four Factor Index that is based on the occupational status and educational attainment of both parents and that has proven to be related more strongly to early childhood cognitive functioning (median r = .40) than other standard indices of SES.40 Maternal verbal IQ was assessed on the PPVT-R, which is related strongly with more comprehensive measures of adult IQ, such as the Wechsler Adult Intellcience Scale (median r = .72) and is highly stable (median r = .72). PPVT-R data are missing for one mother, a social worker who was familiar with the test. Quality of parenting was evaluated at 4 years on the preschool version of the HOME that combines a semistructured maternal interview with observation of mother–child interaction. The validity and sensitivity of the HOME as an indicator of socioenvironmental influences on development have been demonstrated by evidence that it explains significant variance in childhood cognitive function over and above that attributable to SES and maternal education.6,41 Median interobserver reliability for the HOME was 96% (range: 84% to 100%). The eleementary HOME, designed for children from 6- to 10-year-olds, was not given at the 11-year visit, because it was not considered valid for this age group and because we have found that version to be more valid at the younger end of the age range.

Data Analysis

Statistical analyses used were the Student's t test, Pearson correlation, χ² test, and multiple regression.

RESULTS

Demographic and other characteristics of the mothers and children, broken down by breastfeeding choice, are presented in Table 1. Almost three-fourths (4 years: 73.4%; 11 years: 73.8%) of the mothers breastfed their infants for an average of ~6.5 months (4 years: mean = 28.1 weeks, SD = 27.7; 11 years: mean = 28.7 weeks, SD 28.4). Of the 237 women at the 4-year follow-up who had breastfed their infants, 97 (40.9%) breastfed <4 months; 32 (13.5%) 4 to 5.9 months; 68 (28.7%) 6 to 11.9 months; and 40 (16.9%) ≥1 year. Of the 207 women at the 11-year visit who had breastfed, comparable proportions of the mothers breastfed for the same number of months: 81 (39.1%) breastfed <4 months; 30 (14.5%) for 4 to 5.9 months; 60 (29.0%) for 6 to 11.9 months; and 36 (17.4%) ≥1 year.

Breastfeeding was related to higher social class and education at both ages, confirming earlier studies. Mothers who breastfed also scored higher on the PPVT-R and had more optimal parenting skills assessed on the HOME. Distributions in the two groups were similar for maternal age, gestational age, and gender of child at 4 and 11 years. Only one infant who was not breastfed weighed <2000 g at birth (1818 g). There was no birth weight difference between the breastfed and bottle-fed groups when this infant was excluded from the analysis. Because exclusion of this infant from the regression analyses did not change the pattern or significance levels of the findings, he was included in the sample.

Table 2 shows the unadjusted scores on the McCarthy Scales, the PPVT-R, and the WISC-R for the children in the two groups. Although all test scores were normalized to a mean (±SD) value of 100 ± 15, the population mean for the WISC-R had risen to 108, because of its previous standardization in 1974. These data confirm in a predominantly full-term sample the findings of Lucas et al and others that children who were breastfed as infants score significantly higher on IQ tests in later years and extend these findings to include 11 years of age. These effects were demonstrated on three different measures of intellectual performance at 4 and 11 years. The number of weeks of breastfeeding was related significantly to four of the five McCarthy Scales with the association with the Verbal Scale being the strongest (r = .25; P < .0001), as in the British study. The association with the fifth McCarthy scale, Quantitative, fell short of statistical significance (r = .10; P = .07). At 11 years, the number of weeks of breastfeeding was associated significantly with the WISC-R Verbal and Full Scale IQ and with all the WISC-R Verbal subscales with the relation to Vocabulary and Comprehension being the strongest (r = .18 and .17; P < .005, respectively).

Hierarchical multiple regression analyses were used to adjust for the four confounding factors shown in Table 1. Although weakened, the beneficial effect of breastfeeding remained significant after inclusion of social class and education for the McCarthy GCI and the child PPVT-R at 4 years and the WISC-R Verbal and Full Scale IQs at 11 years (Table 3), confirming the results of Lucas et al. However, the inclusion of two direct measures of parental input, maternal IQ and the HOME score in the next step of the regression, reduced the breastfeeding, social class, and educational influences to nonsignificant levels. These data suggest that the association between breastfeeding and childhood IQ is attributable largely to differences in intellectual ability and quality of parenting between breastfeeding and non-breastfeeding mothers.

At 11 years, achievement tests were also adminis-
Effects of Breastfeeding on Woodcock Achievement Scores at 11 Years, After Adjustment for Maternal Characteristics

TABLE 4.

were found (all values)

No significant interaction effects .

dren from families providing less optimal intellec-
tive stimulation. No significant interaction effects .

Lastly, we added interaction terms for feeding by
maternal IQ and feeding by HOME score to the
regression analyses to determine if the effects of
breastfeeding may be particularly beneficial to chil-
dren. As with the IQ scores, the relations be-
 tween breastfeeding and achievement scores were
higher for breastfed than for bottle-fed children
word, Passage, and Reading Comprehension tests
advantage was shown to be strongest for verbal skills
but remained significant even after these influences
were controlled statistically.

DISCUSSION

The high incidence of breastfeeding in this sample
reflects the middle-class status of the mothers in this
cohort and the popularity of breastfeeding at the
time of recruitment (1980 through 1981). Breastfeed-
ing more than doubled in the United States between
1965 and 1982, when it peaked at 61.9% in a national
survey. Although it declined ~13% between 1984
and 1989, the initiation of breastfeeding again
increased by 1995 to 59.7%, almost the level in 1982.

Our findings confirm those of Lucas et al regarding
the IQ advantage shown by children who were
breastfed as infants and extend these findings to a
predominantly full-term sample through 11 years of
age, indicating that this advantage is found not only
among preterm infants who may be especially sen-
tive to effects of early nutrition. In both studies, the
advantage was shown to be strongest for verbal skills
and for infants who were breastfed the longest. In
both studies, the effect of breastfeeding was attribut-
able in part to social class and maternal education
but remained significant even after these influences
were controlled statistically.

Because our study also included direct measures
of maternal IQ and parenting skills related to cogni-
tive performance, we were able to adjust for differ-
ences in genetic potential and parental behavior. Af-
ter these more direct measures of parental input
were controlled statistically, breastfeeding no longer
seemed to affect childhood intellectual function. The
mother’s decision to breastfeed, particularly for an
extended period, presumably reflects her concern
with her infant’s welfare and her motivation and

TABLE 3. Effects of Breastfeeding at Ages 4 and 11 Years, After Adjustment for Maternal Characteristics

<table>
<thead>
<tr>
<th></th>
<th>McCarthy GCI</th>
<th>PPVT-R (Child)</th>
<th>Verbal IQ</th>
<th>Performance IQ</th>
<th>Full Scale IQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N = 521)</td>
<td>(N = 319)</td>
<td>(N = 278)</td>
<td>(N = 278)</td>
<td>(N = 278)</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Step 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breastfeeding</td>
<td>.21****</td>
<td>.21****</td>
<td>.24****</td>
<td>.24****</td>
<td>.20****</td>
</tr>
<tr>
<td>Step 2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breastfeeding</td>
<td>.21****</td>
<td>.12**</td>
<td>.24****</td>
<td>.14**</td>
<td>.20****</td>
</tr>
<tr>
<td>Social class</td>
<td>.34****</td>
<td>.21****</td>
<td>.36****</td>
<td>.17**</td>
<td>.28****</td>
</tr>
<tr>
<td>Education</td>
<td>.32****</td>
<td>.17**</td>
<td>.36****</td>
<td>.22****</td>
<td>.28****</td>
</tr>
<tr>
<td>Step 3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breastfeeding</td>
<td>.21****</td>
<td>.06</td>
<td>.24****</td>
<td>.08</td>
<td>.20****</td>
</tr>
<tr>
<td>Social class</td>
<td>.34****</td>
<td>.06</td>
<td>.36****</td>
<td>.05</td>
<td>.28****</td>
</tr>
<tr>
<td>Education</td>
<td>.32****</td>
<td>.04</td>
<td>.36****</td>
<td>.10</td>
<td>.28****</td>
</tr>
<tr>
<td>Maternal IQ</td>
<td>.39****</td>
<td>.14**</td>
<td>.42****</td>
<td>.19**</td>
<td>.39****</td>
</tr>
<tr>
<td>HOME score</td>
<td>.51****</td>
<td>.38****</td>
<td>.46****</td>
<td>.29**</td>
<td>.33****</td>
</tr>
</tbody>
</table>

From a hierarchical multiple regression analysis.
† Standardized regression coefficient, adjusts for influence of other variables at that step in the model.
* P < .05; ** P < .025; *** P < .01; **** P < .001.

TABLE 4. Effects of Breastfeeding on Woodcock Achievement Scores at 11 Years, After Adjustment for Maternal Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Word Comprehension</th>
<th>Passage Comprehension</th>
<th>Reading Comprehension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N = 277)</td>
<td>(N = 227)</td>
<td>(N = 277)</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Step 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breastfeeding</td>
<td>.16****</td>
<td>.16****</td>
<td>.16****</td>
</tr>
<tr>
<td>Step 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breastfeeding</td>
<td>.16****</td>
<td>.10**</td>
<td>.16****</td>
</tr>
<tr>
<td>Social class</td>
<td>.21****</td>
<td>.08*</td>
<td>.14**</td>
</tr>
<tr>
<td>Education</td>
<td>.25****</td>
<td>.19****</td>
<td>.22****</td>
</tr>
<tr>
<td>Step 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breastfeeding</td>
<td>.16****</td>
<td>.02</td>
<td>.16****</td>
</tr>
<tr>
<td>Social class</td>
<td>.21****</td>
<td>.04</td>
<td>.14****</td>
</tr>
<tr>
<td>Education</td>
<td>.25****</td>
<td>.08</td>
<td>.22****</td>
</tr>
<tr>
<td>Maternal IQ</td>
<td>.42****</td>
<td>.35******</td>
<td>.34******</td>
</tr>
<tr>
<td>HOME score</td>
<td>.35******</td>
<td>.19******</td>
<td>.28******</td>
</tr>
</tbody>
</table>

† Standard regression coefficient, adjusts for influence of other variables at that step in the model.
* P < .10; ** P < .05; *** P < .025; **** P < .01; ***** P < .001.
ability to stimulate and enrich her child’s development, which are at least partially independent of social class and education.

The study by Lucas et al.5 involved a nonrandomized comparison of preterm infants fed breast milk or formula, resulting in comparisons that may have been confounded by socioenvironmental differences between breastfeeding and nonbreastfeeding mothers that were not controlled adequately by maternal social class and education. Moreover, the standard formula that was provided may have been nutritionally inadequate for preterm infants. In a subsequent randomized multicenter study,27 preterm infants fed a standard-term formula for 1 month performed more poorly at 18 months than those given a nutrient-enriched preterm formula. However, in this randomized study, no differences were found in outcome at 18 months between preterm infants fed donor breast milk and those fed an enriched preterm formula. These findings indicate the important nutritional benefits of breast milk or an equivalent enriched formula for preterms, but their implications for full-term infants are questionable because, when the sample was assigned randomly breast milk or a nutritionally appropriate formula, no intellectual differences were found. The lack of differences between preterms randomly fed breast milk or an appropriate formula is consistent with our findings that the correlation of breastfeeding with more optimal cognitive function is actually attributable to quality of parental intellectual endowment or stimulation unless the infant formula is nutritionally deficient. Had random assignment not been used in the British multicenter study, breastfed infants might have seemed to perform more optimally than infants fed enriched preterm formula.

Although the findings in our study cast doubt on the nutritional advantages of breast milk on neurodevelopment in full-term infants and the conclusion that breastfeeding improves childhood intellectual performance, they have no bearing on evidence of the medical benefits of breastfeeding, which have been demonstrated in other studies, or on the need to provide nutritionally adequate formula for preterm or other nutritionally deprived or at-risk infants.

ACKNOWLEDGMENTS

This study was supported by Grants R01-ES03256 and R01-ES05843 from the National Institute of Environmental Health Sciences, with supplemental support from the National Institutes of Health Biomedical Research Support Program Grant SO6-RR01867. Initial recruitment of the sample was funded by Grant CR80852010 from the Environmental Protection Agency.

We thank Greta Fein and Pamela Schwartz, who collaborated on the PCB infant study; Renee Berube, Susan DeHaan, and Candace Cowling, who administered the child follow-up assessments; Beth Nordstrom-Klee, Jeffrey Dowler, Darby Settles, and Sonia Narang, who worked on the data set; and the mothers and children who participated in this research project.

REFERENCES

33. Jacobson JL, Jacobson SW, Humphrey HEB. The effects of in utero exposure to polychlorinated biphenyls and related contaminants on...
40. Hollingshead AB. Four Factor Index of Social Status. New Haven, CT; 1975
Breastfeeding Effects on Intelligence Quotient in 4- and 11-Year-Old Children
Sandra W. Jacobson, Lisa M. Chiodo and Joseph L. Jacobson

Pediatrics 1999;103:e71

Updated Information & Services
including high resolution figures, can be found at:
/content/103/5/e71.full.html

References
This article cites 27 articles, 8 of which can be accessed free at:
/content/103/5/e71.full.html#ref-list-1

Citations
This article has been cited by 11 HighWire-hosted articles:
/content/103/5/e71.full.html#related-urls

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Developmental/Behavioral Pediatrics
/cgi/collection/development:behavioral_issues_sub
Fetus/Newborn Infant
/cgi/collection/fetus:newborn_infant_sub
Nutrition
/cgi/collection/nutrition_sub
Breastfeeding
/cgi/collection/breastfeeding_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 1999 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.
Breastfeeding Effects on Intelligence Quotient in 4- and 11-Year-Old Children
Sandra W. Jacobson, Lisa M. Chiodo and Joseph L. Jacobson

Pediatrics 1999;103;e71

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/103/5/e71.full.html