ABSTRACT OF ORIGINAL ARTICLE. Tap water scald burns account for 7% to 17% of all childhood scald burns that require hospitalization. Often the burns are severe and disabling. Toddlers and preschool children are the most frequent victims. In 45% of the injuries, the unsupervised victim or peer turned on the tap water; in 28% the cause was abuse. Eighty percent of the homes tested had unsafe bathtub water temperatures of 54°C (130°F) or higher, exposing the occupants to the risk of full-thickness scald with <30-second exposure to hot water. Such burns may be prevented passively by limiting household water temperatures to <52°C (125°F). New water heaters could be preset at this temperature, and families could be taught to turn down the temperature on existing units.

COMMENTARY

Each year in the United States, ~1200 children die from fires and burns. Mortality from burns has decreased dramatically since the famous Cocoanut Grove Fire killed 491 people in Boston, MA, in 1942. Of this tragedy was born the modern treatment of burns, leading to the development of effective fluid resuscitation and management and the use of topical antimicrobial drugs. It also fostered the study of grief and attention to grief counseling for families and victims of acute trauma. Most children with burns currently survive because of these advances in care.

The morbidity from burns among these survivors is considerable. There are >20 000 children hospitalized for the care of burn injuries each year. Scald burns are the most common cause of burn requiring hospital admission in young children; flame burns predominate in adolescents and adults. Most of these children undergo at least one excision and grafting, and many children with larger burns undergo multiple grafting procedures over the ensuing months and years. The problem of scarring in burns has yet to be solved. Hypertrophic scarring leads to contractions, functional disability, impaired bone growth, heterotopic calcification, and more surgery. Although most children with burn scars cope reasonably well with their injuries, the stress on these children and their caretakers is considerable. Most of us who work in burn centers and see these children daily realize that although our current care is good, it is not good enough.

The best care of children with burns is clearly to prevent these burns from occurring in the first place. One of the outstanding success stories in pediatric injury prevention was initiated and catalyzed by the lead article in the July 1, 1978, issue of Pediatrics: “Tap Water Scald Burns in Children,” by Kenneth W. Feldman, MD, and colleagues in Seattle, WA. As in many important studies, this arose from Dr Feldman’s clinical experience. His experience with the scald burns of an office patient led him to question why such a seemingly preventable injury had occurred. Dr Feldman expanded his own anecdotal experience in two ways. He conducted a chart review at Children’s Hospital and at the regional burn unit at Harborview Medical Center in Seattle as well as obtained national estimates of the frequency of these injuries from the National Electronic Injury Surveillance System of the Consumer Product Safety Commission.

These two data sources confirmed that tap water scalds were common both in Seattle and in other cities in the United States. Tap water scalds accounted for 7% to 17% of all childhood scald burns requiring hospitalization. In addition, children, especially younger than 5 years of age, account for more than half of all hospitalized victims with tap water scalds. These scalds tend to be more severe than other scalds, involve larger surface areas, and frequently lead to grafting and hypertrophic scarring. In Feldman’s original series, 12% of burned children died.

The unique contribution of Feldman and his colleagues was in their pursuit of how and why these injuries occurred. Once this was understood, how to prevent these scalds was obvious. This study illustrates quintessential shoe-leather epidemiology. Feldman, his wife Ann, and a community health aide from his clinic, Molly McMillon, literally knocked on doors and measured tap water temperature in homes and apartments surrounding the Odessa Brown Children’s Clinic, an inner city neighborhood health center operated by Children’s Hospital where Feldman worked. They found that the mean bathtub water temperature in these homes was 61°C (142°F); 80% of homes visited had bathtub water temperatures higher than 54°C (130°F). Feldman conducted a lit-
perature setting of the water heater! At 49°C (120°F), it would take 10 minutes and at 52°C (125°F) 2 minutes to cause full thickness burns in adult skin. Persisting in his shoe leather epidemiology, Feldman contacted the Consumer Product Safety Commission, appliance manufacturers, utility companies, and detergent manufacturers and found that gas water heaters were factory preset at 60°C (140°F) and electric heaters at 66°C (150°F). The local power company in Seattle recommended and set water heater temperatures of 60° to 66°C (140° to 150°F).

The findings in this simple study were confirmed subsequently by other investigators. For example, 25% of scald burns resulting in hospitalization in upstate New York were found to be attributable to tap water; 50% of these were to children younger than 5 years of age.4 Similar findings were reported by authors in Wisconsin5 and New Zealand.6,7 Most important, the publication of this report fostered efforts in the United States and in Canada to prevent these scalds, using the strategy proposed by Feldman: lower the temperature. Feldman himself led an educational campaign in conjunction with the local utility company for homeowners and utility company service people to lower the temperature setting on the heaters. Utility companies became interested not only because it was good for community relations, but lowering water heater settings saved 10,000 BTUs per day for electric heaters and nearly 5000 BTUs per day for gas heaters. Katcher conducted an extensive intervention in Wisconsin, again in conjunction with the local power company.8 Educational materials were sent out with utility bills, and liquid crystal thermometers were offered. The program resulted in an estimated 20,000 homeowners lowering their water heater temperatures. Educational programs in other settings9,10 and in countries such as Norway11 and New Zealand,12 in which the focus was on lowering the water heater setting also were successful.

Although the educational program was successful, Feldman realized that a more definitive solution would be to require that water heaters be preset either at the factory or at installation at a lower, safer temperature (49°C to 52°C, 120°F to 125°F). He led a campaign to pass state legislation authorizing such a requirement. Florida became the first state in the nation to mandate lower tap water temperatures, and Washington state followed suit in 1983. This law has been very effective: 84% of homes with water heaters installed after the law went into effect remained set at the lower temperature.13 Most important, the incidence of these burns has decreased.

The focus on changing the heater (the product) rather than continued “better” supervision of children (changing the host) is a classic example of a passive injury prevention strategy, which works automatically once in place, in contrast to active strategies, which require repeated behavior change on the part of individuals. The ultimate change in regulation and legislation has effectively solved the problem of these burns in young children.

Only a few other injury preventive strategies have proven so simple yet so effective. Child resistant packaging of poisons, smoke alarms for residential fires, and bicycle helmets for the prevention of head injuries are similar types of common sense strategies that have worked. Other types of scald burns in children, such as those attributable to hot foods, have proven difficult to prevent and still populate our burn wards.

This study is a wonderful example of the power of clinical observation and what one clinician can do. Feldman was and continues to be primarily a clinician, but a clinician with a keen sense of observation and great persistence. He cared for burned children and asked how the injuries occurred? What are the similarities between a children burned accidentally, one burned through neglect, and another burned as part of a pattern of abuse? Can these burns be prevented? What prevention strategy will get at the root of the problem and eliminate it once and for all?

In these days of multimillion dollar grants, it is more than a bit refreshing that the total cost of this study was $20 for the thermometer and was funded out of the pocket of the principal investigator, a practicing pediatrician. I think the best studies I have ever done have been the least costly.

In the keynote address at the 50th anniversary meeting of the American Academy of Pediatrics, David Rogers, president of the Robert Wood Johnson Foundation, discussed the need to conduct research that involved practicing pediatricians and focused on interventions that really do improve the health of children.14 One of the examples he cites of studies that made a difference is Feldman’s work. As Rogers states, this study “couples careful clinical observations, thoughtful interventions, and validation of results in ways that have had payoff for better-functioning healthier children.”

REFERENCES
2. McLoughlin E, McGuire A. The causes, cost and prevention of child-
ABSTRACT OF ORIGINAL ARTICLE. The New England Regional Infant Cardiac Program (NERICP) is a voluntary association of all hospitals in the New England states which offer definitive care for infants with heart disease. With the purpose of improving infant cardiac care, the program began in 1968 and continues to the present. Specific activities include professional education to improve case finding and earlier referral; identification and subsidy of appropriate transportation facilities; improved communication with participating hospitals; subsidy of follow-up where needed; provision for room and board for indigent parents when their baby has been moved some distance from home; and continuing nursery nurse education in the recognition of infants with heart disease. All participating hospitals agree to tabulation of their entire experience with infants with heart disease (3626 infants in 9 years). Case histories of surviving infants have been updated systematically.

The period of July 1968 to June 1974 was selected for this detailed analysis because data from this period form the basis of an ongoing long-term follow-up study and have been verified several times. This analysis is continued to the first year of life. More recent data, July 1974 to June 1977, are discussed separately and italicized numerical data from 1974 to 1977 have been added to tables where the results may be of interest.

In the early years, case finding rose by 20% and has continued to increase gradually. By 1976, there were 2.4 NERICP infants per 1000 live births identifiable in the New England states. Surveys of state vital statistics showed a 50% decrease in infants who died with heart disease who did not reach a participating hospital. Neonates are admitted to participating hospitals earlier; admissions of infants less than 2 days old increased from 20% to 34% in 1977. Of infants admitted in 1977, more than 50% were in the first week of life.

During the period of study from 1969 to 1974, there was a consolidation of hospital services for infants with heart disease. Of the initial 11 participating hospitals in 1969, by 1974, there were 5 hospitals offering a full range of cardiac services, 3 hospitals offering limited surgical services, 2 hospitals no longer performing cardiac catheterizations or cardiac surgery in infants, and 1 hospital that had discontinued all pediatric cardiology.

Despite expected differences in case findings, the patient material and management of patients among the various hospitals were surprisingly comparable. There was little variation in the kinds of heart disease encountered over the years, among the states, and among the hospitals. There was a significantly higher mortality among infants whose birth weight was less than 2.0 kg and among infants who had additional, severe noncardiac anomalies. Mortality was significantly higher for infants admitted in the first days or weeks of life and cardiac surgery resulted in higher mortalities in this age group.

Among the many specific anatomic diagnostic categories, there was little change in outcome during the years 1969 to 1974. Subsequently, immediate and 30-day survival from surgical procedures showed improvement whether viewed by age at surgery, diagnosis, operative procedure, or years.

The introduction of early reparative surgery, as opposed to early palliative surgery followed by late repair, occurred in 1973. Subsequent data showed an increasing number of “open heart” procedures in infants with steadily improving 30-day mortality. A similar fall in mortality for closed heart procedures was documented. Results of palliation versus repair for ventricular septal defects, transposition of the great arteries, and tetralogy of Fallot were investigated.

The average number of days of hospitalization, the number of cardiac catheterizations, and the numbers of cardiac operations were evaluated. By using hospital charges for 1975, the estimated cost for care of an average cardiac infant for the first year of life ranged from $3800 to $7200 (average $6699). Among the hospitals, the payments by state agencies for hospital costs in the first year of life were estimated to range from $4300 to $8000 per patient for the same year.

Because NERICP can provide detailed data on a consecutive series of infants from a finite geographic area, epide-

Frederick P. Rivara

Pediatrics 1998;102;256

| Updated Information & Services | including high resolution figures, can be found at: [link](http://pediatrics.aappublications.org/content/102/Supplement_1/256) |
| References | This article cites 13 articles, 3 of which you can access for free at: [link](http://pediatrics.aappublications.org/content/102/Supplement_1/256.full#ref-list-1) |
| Permissions & Licensing | Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: [link](https://shop.aap.org/licensing-permissions/) |
| Reprints | Information about ordering reprints can be found online: [link](http://classic.pediatrics.aappublications.org/content/reprints) |
Frederick P. Rivara
Pediatrics 1998;102;256

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/102/Supplement_1/256