felt that this publication legitimized what we had been doing. Of great importance, it also led to increased resources and space within academic pediatric departments. This occurred at a time when federal monies available for hospital construction supported the building of inpatient units for adolescent patients.

The most valuable result of this red definition of the age limits of pediatrics was, undoubtedly, the opportunity to teach a growing number of trainees interested in adolescents. The creation of the Section on Adolescence by the AAP also was an outgrowth of the recognition of the need for continuing medical education of pediatricians in practice. Because the Society for Adolescent Medicine had been formed in 1968, primarily by pediatricians and a few internists, and held its early national scientific meetings in concert with those of the AAP, there was synergy in the training effort.

The impact of publication of this Statement also can be felt in the increasing requirements by the Residency Review Committee for inclusion of formalized training in adolescent medicine in pediatric programs.

Most recently, the force of this statement was felt in the documentation for the need for subspecialty certification in adolescent medicine by the American Board of Pediatrics. The establishment of subspecialty certification ensures that there will be academicians capable of training generalist pediatricians to provide primary care to teenagers. It also is significant that this was a conjoint SubBoard with the American Board of Internal Medicine, paving the way for eventual improvement in management of the transition of health care from adolescent to adult settings as they mature.

The issue of interface with internal medicine was critical in the deliberations that led to the setting of the upper age limit of adolescence at 21 years. According to Sherrel Hammar, MD (personal communication), this reflected acknowledgment of the difficulty faced by teenagers with chronic illnesses in finding appropriate care providers when they reached adulthood. The improved longevity of many of these patients is, happily, leading to efforts to train internists and family practitioners in their care.

Despite the importance of this definitional Statement to the care of teenagers by pediatricians, it is sobering to find that only 7% of office visits to all physicians are by adolescents, despite the fact that they constitute almost 20% of the population. Moreover, more family practitioners than pediatricians are providing the care. The sad reality is that 25 years after this Statement was published, most teenagers still are not getting any care, let alone the care they deserve.

REFERENCES
5. Reed RB. Patterns of growth in height and weight from birth to eighteen years of age. Pediatrics. 1959;24;804–921

COMMENTARY


Comments by Mary Ellen Avery, MD

ABSTRACT OF ORIGINAL ARTICLE. A controlled trial of betamethasone therapy was carried out in 282 mothers in whom premature delivery threatened or was planned before 37 weeks’ gestation, in the hope of reducing the incidence of neonatal respiratory distress syndrome by accelerating functional maturation of the fetal lung. A total of 213 mothers were in spontaneous premature labor. When necessary, ethanol or salbutamol infusions were used to delay delivery while steroid or placebo therapy was given. Delay for at least 24 hours was achieved in 77% of the mothers. In these unplanned deliveries, early neonatal mortality was 3.2% in the treated group and 15.0% in the control subjects. There
were no deaths with hyaline membrane disease or intra-
ventricular cerebral hemorrhage in infants of mothers
who had received betamethasone for at least 24 hours
before delivery. The respiratory distress syndrome oc-
curred less often in treated babies (9.0%) than in controls
(25.8%), but the difference was confined to babies of <32
weeks’ gestation who had been treated for at least 24
hours before delivery (11.8% of the treated babies com-
pared with 69.6% of the control babies). There may be an
increased risk of fetal death in pregnancies complicated
by severe hypertension–edema–proteinuria syndromes
and treated with betamethasone, but no other hazard of
steroid therapy was noted.

We conclude that this preliminary evidence justifies
additional trials, but that additional work is needed be-
fore any new routine procedure is established.

COMMENTARY

The first controlled trial of antepartum glucocor-
ticoids for prevention of respiratory distress
syndrome launched more than 25 years of ex-
ploration of the hormonal regulation of lung matu-
ration and the optimal means of achieving it in pre-
mature infants. Sir Graham Liggins, an obstetrician,
and Ross Howie, a neonatologist, in Auckland, New
Zealand, tested whether antenatal glucocorticoids
given to the mother within 48 to 72 hours before a
planned delivery could accelerate fetal lung matura-
tion and prevent deaths from respiratory distress
syndrome (also known as hyaline membrane dis-
ease).1 From December 1969 to early 1972, they em-
arked on a prospective, blinded, controlled, clinical
trial based on Liggins experience with premature
delivery of fetal lambs infused with glucocorticoids.
In 1969, Liggins had published the observation that
such an intervention promoted early onset of labor in
the ewe, but the newborn premature lambs, deliv-
ered at 117 to 123 days’ gestation, had partial aera-
tion of lungs from spontaneous ventilation.2

Meanwhile, deLemos and colleagues at Johns
Hopkins, confirmed the observation of Liggins in
twin fetal lambs, one of which received dexametha-
sone and the other saline. The dexamethasone-
treated animals all had lungs with accelerated ap-
pearance of pulmonary surfactants at least a week
earlier than did controls.3

The translation of these findings in lambs to the
clinical setting accomplished in New Zealand in
1972, to routine care elsewhere, was slow, for readily
understood reasons.4 Most obstetricians were con-
cerned about the appearance of delayed adverse ef-
fects on fetal tissues and were reluctant to use ste-
roids before follow-up studies could be reviewed.
There also was a question of efficacy in infants born
before 32 weeks’ gestation, who were not repre-
sented in the New Zealand study (average gesta-
tional age at delivery, 249 days in treated group, 225
in controls). Many other groups, including the Bal-

lards, found synthetic steroid administration optimal
between 26 and 34 weeks.5

Another reason for delay in acceptance of antena-
tal glucocorticoid therapy was failure of the Collabor-
ative Group on Antenatal Steroid Therapy in 1981
to show efficacy in males or in Caucasian subgroups.
Overall, no complications were cited, but the limited
benefit in a large multicenter study was discourag-
ing. By 1982, the New Zealand group provided the
crucial follow-up of 6-year-old children whose moth-
ers had been treated antenatally with betametha-
sone,6 and by 1984, the Collaborative Group on An-
tenatal Steroid Therapy reported that no detectable
growth or physical, motor, or developmental defi-
cencies were identified in the first 3 years of life that
could be attributed to steroid therapy.7

In the 1990s, additional perspectives on antena-
tal glucocorticoids, summarized by Jobe and co-
workers in 1993,8 showed that the combined use of
antenatal glucocorticoids and surfactant replace-
ment therapy was better than either alone, and if a
choice had to be made, glucocorticoids conferred
the greater benefit. By 1994, the National Institutes
of Health Consensus Conference, complete with meta-
analyses, established the efficacy of glucocor-
ticoids as well as their cost benefit.9 By 1996, the
impact on survival of preterm infants by glucocor-
ticoids and surfactant replacement therapy con-
tributed to the lowest neonatal mortality in the
United States in history.10

It was a long road from the publication by a New
Zealand obstetrician/endocrinologist interested in
parturition to life-saving interventions on behalf of
preterm infants. The next step will be to reduce pre-
term births.

REFERENCES

1. Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid
treatment for prevention of the respiratory distress syndrome in pre-
2. Liggins GC. Premature delivery of foetal lambs infused with glucocor-
3. deLemos RA, Shermeta DW, Knelson JH, Kotas R, Avery M. Acceler-
ation of appearance of pulmonary surfactant in the fetal lamb by admin-
4. Avery ME. The argument for prenatal administration of dexamethasone
to prevent respiratory distress syndrome. J Pediatr. 1984;104:240
5. Ballard RA, Ballard PL. Use of prenatal glucocorticoid therapy to pre-
6. MacArthur BA, Howie RN, Dezoete JA, Elkins J. School progress and
cognitive development of 6-year old children whose mothers were
7. Collaborative Group on Antenatal Steroid Therapy. Effects of antenatal
dexamethasone administration in the infant: long-term follow-up. J Pe-
diatr. 1984;104:291–297
8. Jobe AH, Mitchell BR, Gunkel JH. Beneficial effects of the combined use
of prenatal corticosteroids and postnatal surfactant on preterm infants.
95:133–135. Commentary
10. Guyer B, Martin JA, MacDorman MF, Anderson RN, Strobino DM.
Mary Ellen Avery
Pediatrics 1998;102:250

Updated Information & Services
including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/102/Supplement_1/250

References
This article cites 9 articles, 4 of which you can access for free at:
http://pediatrics.aappublications.org/content/102/Supplement_1/250.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Neonatology
http://classic.pediatrics.aappublications.org/cgi/collection/neonatology_sub
Pharmacology
http://classic.pediatrics.aappublications.org/cgi/collection/pharmacology_sub
Therapeutics
http://classic.pediatrics.aappublications.org/cgi/collection/therapeutics_sub
Respiratory Tract
http://classic.pediatrics.aappublications.org/cgi/collection/respiratory_tract_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
https://shop.aap.org/licensing-permissions/

Reprints
Information about ordering reprints can be found online:
http://classic.pediatrics.aappublications.org/content/reprints

Mary Ellen Avery
Pediatrics 1998;102;250

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/102/Supplement_1/250