was formed in 1991 (it now comprises 88 investiga-
tional, ethnic, and geographic identity. A consortium
randomly in human populations according to polit-
most were rare, and that they were distributed non-
database was established. PAHdb
locus-specific mutation databases,12 linked to the cor-
catalogs of Mendelian Inheritance in Man (OMIM
responding entry in the online version of McKusick’s
mcgill.ca/pahdb) has since become a prototype for
locus-specific mutation databases,12 linked to the cor-
responding entry in the online version of McKusick’s
catalogs of Mendelian Inheritance in Man (OMIM

REFERENCES
1. Penrose LS. Phenylketonuria. A problem in eugenics. Lancet. 1946;1:
2. Bickel H, Gerrard J, Hickman EM. Influence of phenylalanine intake on the
1954;43:64–77
3. Woolf LJ, Griffiths R, Moncrieff A. Treatment of phenylketonuria with a
4. Armstrong MD, Tyler FH. Studies on phenylketonuria. I. Restriction of
5. Scrivcr CR, Rosenberg LE. Amino Acid Metabolism and Its Disorders.
Errors of Metabolism, Division of Medical Sciences, Assembly of Life
Sciences. Genetic Screening, Programs, Principles and Research. Washing-
ton, DC: National Academy of Sciences; 1975
Mohluský AG, eds. Assessing Genetic Risks. Implications for Health and
8. Medical Research Council Working Party on Phenylketonuria. Recom-
dendations on the dietary management of phenylketonuria. Arch Dis
Child. 1993;68:426–427
deficiency: from phenotype to genotype. Pteridines. 1995:4:1–10
10. Lenke RR, Levy HL. Maternal phenylketonuria and hyperphenylala-
ninemia. An international survey of untreated and treated pregnancies.
11. Woo SLC, Lidsky AS, Guttler F, Chandra T, Robson KJH. Cloned
human phenylalanine hydroxylase gene allows prenatal diagnosis and
12. Nowacki P, Byck S, Prevost L, Scriver CR. The PAH Mutation Analysis

COMMENTARY

Intrauterine Growth as Estimated From Liveborn Birth-Weight Data at 24
to 42 Weeks of Gestation, by Lula O. Lubchenco et al, Pediatrics,
1963;32:793–800

Comments by Frank R. Greer, MD

ABSTRACT OF ORIGINAL ARTICLE. Data on the
birth weights of 5,635 live-born Caucasian infants at 24 to
42 weeks’ gestation are presented. All infants were born
from July 1948 to January 1961. Data from infants born at
greater than 36 weeks’ gestation after 1955 are excluded
because of the large number of infants. The socioeco-

nomic stratum represented by this population is defined as medically indigent or part-pay. The median weights of
Colorado babies (3230 g) were found to be lower at 40 weeks’ gestation that the national median (3340 g).

Weight curves in the form of percentiles are generated
from the data. These curves can be used as standards for
determining the adequacy of weight gain of individual infants which may be done either at the time of birth, or after birth in relation to extrauterine environmental factors.

COMMENTARY

The work described in this landmark publication by Lubchenco and colleagues is still used by every practitioner caring for newborn infants even today. For those of us who began our pediatric training after 1970, the Lubchenco growth curves, supplied in a convenient tablet form to most newborn nurseries by a US formula manufacturer, were a part of every newborn infant work-up. Most of us took these for granted and paid scant attention to the previous generation of newborn infant care providers who spoke of the days when the definition of a premature infant was any newborn with a birth weight <2500 g. This definition was recommended by both the American Academy of Pediatrics and the World Health Assembly. Today’s use of serial perinatal ultrasound dating of the fetus makes these “good old days” seem even more remote. Pediatricians attend deliveries with little suspense concerning the questions of gestational age and fetal growth. Yet it was this article that pointed out the importance of fetal growth and its potential relationship to both the immediate well-being and the long-range outcome of the newborn. It made possible a more precise definition of prematurity and the widespread adoption of the terms “small for gestational age,” “large for gestational age,” “intrauterine growth retardation,” and fetal dysmaturity. It also established the basis for screening infants with birth weights greater than the 90th percentile or less than the 10th percentile for potential medical problems.

To be sure, the Lubchenco curves (see Fig 1) were established in the mile-high city of Denver, CO, and subsequently, it was shown that these curves overestimated the number of infants greater than the 90th percentile (and underestimated those less than the 10th percentile) in cities at lower altitudes, which included most of the United States. The study also was criticized for including only a relatively indigent population. However, other growth curves quickly followed, most notably those of Babson and Usher. The Denver population included a large Hispanic population that accounted for 30% of the births, but the authors noted that there were no differences in birth weights between Hispanic and other Caucasian infants. Of note, the database excluded infants of “Negro, Oriental, and Indian” ethnicity. Finally, the growth curves did include twin deliveries, even though the authors pointed out that after 34 weeks’ gestation, twins fell from the 50% to the 15% by 42 weeks’ gestation. They also described separate curves for males and females, although the ~100 g weight difference between sexes was small enough that a combined curve for both sexes generally was adopted in the United States.

Just 2 years earlier, Joseph Warkany and colleagues had pointed out in a lengthy publication that intrauterine growth retardation was a syndrome of sorts, with significant effects on long-

Fig 1. The weights of liveborn Caucasian infants at gestational ages from 24 to 42 weeks are graphed as percentiles.
term outcome. According to Warkany: “The unsatisfactoriness of our knowledge in this area is due, to a great extent, to the false label attached to these children, whose records are pooled with those of the prematures. The lack of separation of the 2 types of children underweight at birth has led to a neglect of observations and recordings necessary for a better knowledge of this field.” Indeed a study in 1965 showed that there were as many term as preterm infants born weighing <2500 g in the United States, and that the majority of preterm infants were actually born with a birth weight of >2500 g. Building on these reports and the Lubchenco fetal growth curves, Battaglia and Lubchenco then proposed the well known classification system of large for gestational age, small for gestational age, and appropriate for gestational age for determining at-risk infants for various medical problems, initially focusing on increased mortality rate and hypoglycemia. Usher and Farr went on to begin the description of the physical characteristics differentiating premature and small for gestational age infants that also remain in wide use today.

After 35 years, the observations made by Lubchenco remain a keystone in the practice of neonatology. This work is truly a landmark in its field.

REFERENCES
12. Farr V. The definition of some external characteristics used in the assessment of gestational age in the newborn. Dev Med Child Neurol. 1966;8:507–511

COMMENTARY

Comments by Jack P. Shonkoff, MD

ABSTRACT OF ORIGINAL ARTICLE. This report describes a constellation of clinical features found in 25 children with a history of an illness or accident from which they recovered, despite their parents’ anticipation of a fatal outcome. The paper proposes the hypothesis that children who are expected by their parents to die prematurely often react with a disturbance in psychosocial development that is rooted in the parent-child relationship, which the authors characterize as a vulnerable child syndrome. The essential features of the proposed syndrome include difficulty with separation, infantile behavior, bodily overconcerns, and school underachievement. The paper provides an overview of predisposing factors and determinants of the presenting symptoms, along with suggestions for both clinical management and primary prevention.

COMMENTARY

This classic paper by Green and Solnit illustrates the essence of the behavioral–developmental dimension of clinical pediatrics. Its brilliance is reflected in both its seminal creativity and its enduring salience over more than 3 decades. Its relevance for the practicing pediatrician remains vital to this day, and its message is particularly compelling in view of the challenges facing our highly dynamic health care system. Its implications for the academic community are similarly worthy of serious reflection.

The core contribution of this paper is the extent to which it provides a rich conceptual framework for the assessment and management of a cluster of “bread and butter” clinical concerns that permeate the worlds of primary and tertiary care pediatrics. The symptomatology that captured the attention of

Frank R. Greer

Pediatrics 1998;102;237

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: /content/102/Supplement_1/237.full.html</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 10 articles, 3 of which can be accessed free at: /content/102/Supplement_1/237.full.html#ref-list-1</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
</tr>
<tr>
<td></td>
<td>Research Methods & Statistics /cgi/collection/research_methods_-_statistics_sub</td>
</tr>
<tr>
<td></td>
<td>Growth/Development Milestones /cgi/collection/growth:development_milestones_sub</td>
</tr>
<tr>
<td></td>
<td>Neonatology /cgi/collection/neonatology_sub</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: /site/misc/Permissions.xhtml</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: /site/misc/reprints.xhtml</td>
</tr>
</tbody>
</table>
Intrauterine Growth as Estimated From Liveborn Birth-Weight Data at 24 to 42 Weeks of Gestation, by Lula O. Lubchenco et al., Pediatrics, 1963;32:793–800
Frank R. Greer
Pediatrics 1998;102:237

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/102/Supplement_1/237.full.html