ABSTRACT. Background. Because injuries are the leading cause of death in children, injury prevention counseling is recommended as part of routine pediatric care. Increasing such counseling is a national health objective. Estimating the proportion of US children who receive such counseling and assessing their compliance with safety recommendations may help improve counseling efforts.

Methods. Respondents to a 1994 random digit-dial telephone survey of the US population were asked about receipt of age-appropriate injury prevention counseling at a medical visit and related safety practices for a randomly selected child 0 to 14 years of age in the household (N = 1396).

Results. Receiving any injury prevention counseling was reported for 39.3% of children 0 to 14 years old who had a medical visit in the past year and was more common among children who were younger, lived in urban areas, and lived in poverty. In general, receiving counseling was associated with safer behaviors. Counseling about ipecac was reported for 17.2% of children 0 to 6 years old; having ipecac in the home was more likely for those counseled (73.4% vs 32.0%). Counseling about posting the poison control number was reported for 24.9% of children 0 to 6 years old; posting this number was more common among those counseled (79.3% vs 52.6%). Counseling about bicycle helmets was reported for 18.6% of children 5 to 14 years old; a report of always wearing a helmet was more common among those counseled (43.9% vs 19.1%). Counseling about car seats and safety belts was reported for 25.4% of children 0 to 14 years old; a report of always using occupant restraints was more common among those counseled (89.0% vs 78.2%).

Conclusions. Injury prevention counseling is associated with reported preventive safety practices among US children, but a relatively small proportion of households with young children report receiving such counseling. Health care providers should increase efforts to provide injury prevention counseling. Pediatrics 1998;102(5). URL: http://www.pediatrics.org/cgi/content/full/102/5/e55; counseling, wounds and injuries, child, accident prevention.

ABBREVIATION. ICARIS, Injury Control and Risk Survey.

Because injury is the leading cause of death among children and adolescents in the United States,1 the American Academy of Pediatrics,2 the American Academy of Family Physicians,3 the American Medical Association,4 and the United States Preventive Services Task Force5 recommend including age-appropriate injury prevention counseling in the routine medical care of infants, children, and adolescents. Increasing the proportion of clinicians who routinely provide such counseling is a national health objective.6

We have found no report estimating the proportion of US children who receive injury prevention counseling at medical visits, although other studies have estimated the proportion of pediatricians delivering such counseling.7 In 1994, the Centers for Disease Control and Prevention conducted the Injury Control and Risk Survey (ICARIS), a national survey designed to assess a wide variety of injury risk factors. This report summarizes ICARIS data about pediatric injury prevention counseling and the relationship of such counseling to associated preventive safety practices.

METHODS

We conducted a random digit-dial telephone survey from April 28, 1994, through September 18, 1994. From a proprietary listing of all exchanges in all 50 states and the District of Columbia, we stratified telephone exchanges by whether they had ≥10% of households occupied by minorities. Such exchanges were sampled at a higher rate than the others to improve minority representation. At least six attempts were made to contact each number.

To ensure equal numbers of male and female respondents, once a household was reached, we determined the number of men and women age 18 years and older residing there. Using a random procedure, we then selected one sex category from those applicable to the household; if more than one eligible individual was in the sex category, we asked for the individual with the most recent birthday.

If a household member agreed to participate, an English- or Spanish-speaking adult respondent reported on household and individual factors, such as total pretax household income and

From the *Epidemic Intelligence Service, Epidemiology Program Office; †Division of Intentional Injury Prevention; and §Office of Statistics and Programming, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia. The following are members of the ICARIS project, which designed and conducted the survey from which these data were obtained: Jeffrey J. Sacks, MD, MPH (Principal Investigator); Barbara Houston; Marcie-jo Kresnow, MS; Joann M. O’Neil, BA; and Suzanne M. Smith, MD, MPH, of National Center for Injury Prevention and Control. James Hersey, PhD; Rick Williams, PhD, and Aiman Zeid, MS, of Battelle. Sherry Marcy, MPH, and Deborah J. Zivan, BA, of DataStat (Project Core Group members). Julie Bolen, PhD, Christine M. Branche, PhD, Peter Briss, MD; Terrence Chorba, MD, MPH; Alex Crosby, MD, MPH; Yvette Davis, VMD, MPH; Jennifer Friday, PhD; Arlene Greenspan, DrPH, PT; James Mercy, PhD; Phil McClain, MS; Lloyd Potter, PhD, MPH; and Kenneth E. Powell, MD, MPH, of National Center for Injury Prevention and Control. Thomas Matte, MD, MPH, of the National Center for Environmental Health (Project Associates).

Received for publication Mar 2, 1998; accepted Jun 22, 1998.

Reprint requests to (K.P.Q.) National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, 4770 Buford Hvy NE, MS K-65, Atlanta, GA 30341-3714.

PEDIATRICS (ISSN 0031 4005). Copyright © 1998 by the American Academy of Pediatrics.
TABLE 1. US Children Receiving Any Injury Counseling Among Those Who Had Seen a Medical Provider in the Preceding 12 Months by Sociodemographic Characteristics, 1994*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Unweighted Number Counseled</th>
<th>Weighted Number Counseled</th>
<th>Weighted % Counseled (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>654</td>
<td>23 168 187</td>
<td>39.3 (36.2–42.3)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boy</td>
<td>331</td>
<td>11 669 005</td>
<td>38.2 (33.9–42.4)</td>
</tr>
<tr>
<td>Girl</td>
<td>322</td>
<td>11 475 625</td>
<td>40.7 (36.3–45.1)</td>
</tr>
<tr>
<td>Age group (y)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1</td>
<td>181</td>
<td>5 169 946</td>
<td>71.6 (64.7–78.5)</td>
</tr>
<tr>
<td>2–6</td>
<td>225</td>
<td>8 399 001</td>
<td>39.9 (34.8–45.0)</td>
</tr>
<tr>
<td>7–12</td>
<td>199</td>
<td>7 453 001</td>
<td>33.1 (28.3–37.9)</td>
</tr>
<tr>
<td>13–14</td>
<td>49</td>
<td>2 146 239</td>
<td>26.3 (18.2–34.3)</td>
</tr>
<tr>
<td>Household income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;$20 000</td>
<td>179</td>
<td>5 846 406</td>
<td>45.8 (39.5–52.1)</td>
</tr>
<tr>
<td>$20 000–$34 999</td>
<td>137</td>
<td>4 952 320</td>
<td>38.2 (31.6–44.8)</td>
</tr>
<tr>
<td>$35 000–$49 999</td>
<td>109</td>
<td>4 063 097</td>
<td>38.8 (31.4–46.3)</td>
</tr>
<tr>
<td>=$50 000</td>
<td>175</td>
<td>6 399 870</td>
<td>34.9 (29.6–40.2)</td>
</tr>
<tr>
<td>Poverty**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>125</td>
<td>4 337 282</td>
<td>50.2 (42.1–58.3)</td>
</tr>
<tr>
<td>No</td>
<td>465</td>
<td>16 518 746</td>
<td>37.1 (33.6–40.6)</td>
</tr>
<tr>
<td>Highest educational level in household</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤High school</td>
<td>197</td>
<td>7 040 369</td>
<td>39.7 (34.3–45.0)</td>
</tr>
<tr>
<td>&gt;High school and &lt;college graduate</td>
<td>197</td>
<td>6 808 188</td>
<td>36.4 (30.9–41.9)</td>
</tr>
<tr>
<td>College graduate</td>
<td>132</td>
<td>4 711 659</td>
<td>41.0 (34.1–47.8)</td>
</tr>
<tr>
<td>&gt;Postgraduate</td>
<td>116</td>
<td>4 236 042</td>
<td>42.1 (34.8–49.5)</td>
</tr>
<tr>
<td>Census region***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>118</td>
<td>5 822 117</td>
<td>47.2 (39.7–54.8)</td>
</tr>
<tr>
<td>Midwest</td>
<td>115</td>
<td>4 634 707</td>
<td>32.2 (26.1–38.4)</td>
</tr>
<tr>
<td>South</td>
<td>251</td>
<td>6 912 436</td>
<td>36.8 (32.1–41.5)</td>
</tr>
<tr>
<td>West</td>
<td>170</td>
<td>5 798 926</td>
<td>43.0 (36.7–49.3)</td>
</tr>
<tr>
<td>County size****</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>587</td>
<td>20 346 538</td>
<td>41.1 (37.7–44.4)</td>
</tr>
<tr>
<td>Rural</td>
<td>67</td>
<td>2 821 648</td>
<td>30.0 (22.6–37.4)</td>
</tr>
</tbody>
</table>

* Missing data not shown for sex (1), household income (54), poverty (64), highest educational level in the household (12).

* P < .01 (P values for this Table are for log-likelihood χ² test.

** P < .01.

*** P = .01.

**** P < .02; urban denotes metropolitan statistical areas with >20 000 households.

Data were weighted to provide national estimates and percentiles. Child weights were based on the probability of selecting the randomly selected child in the household and ratio-adjusted to reflect the March 1994 Current Population Survey population counts by the age groups 0 to 4, 5 to 9, and 10 to 14 years of age.

To account for the complex survey design, we used SUDAAN® software for the statistical analysis of correlated data. This software package allowed us to obtain weighted estimates and 95% confidence intervals (CIs) using the proper design parameters and to compute appropriate standard errors of these estimates. Had we not taken these steps to account for the complex survey design, we might have underestimated the variance and subsequently overestimated the significance of associations. We assessed independence between our outcomes and selected demographic characteristics of our study population with the log-likelihood χ² test in SUDAAN.

RESULTS

Interviews were completed for 5238 households (response rate = 5238 completed interviews/[5238 completed interviews + 3630 refusals + 474 incomplete interviews] = 56.1%). Of these 5238 households, 1963 had a child 14 years of age or younger, and 1596 (81.3%) of these children had visited or seen a doctor or nurse in the past 12 months. Parents were the respondents for 1471 (92.2%) of these 1596 children (because exact age was unknown, 17 children were excluded). The proportion of children who had a medical visit in the past year varied by age as...
follows: 97.3% of children 0 to 1 year old, 90.7% of those 2 to 6 years old, 74.2% of those 7 to 12 years old, and 69.2% of those 13 to 14 years old (test for linear trend, \( P < .01 \)).

Receiving counseling about any of the injury prevention topics we studied was reported for 654 (39.3%) of children 0 to 14 years old who had a medical visit in the past year (Table 1) and was more common among children who were younger (\( P < .01 \)), lived in urban areas (\( P = .01 \)), and lived in poverty (\( P < .01 \)).

The proportion of US children for whom age-appropriate, topic-specific injury counseling was provided at a medical visit ranged from 6.3% (95% CI: 4.8%–7.8%) for safe storage of firearms to 30.7% (95% CI: 26.8%–34.6%) for using car seats and seat belts (Table 2). Families living in poverty were more likely than those not living in poverty to report receiving counseling about smoke detectors (\( P < .01 \)), poison storage (\( P < .01 \)), gun storage (\( P < .01 \)), bicycle helmets (\( P = .02 \)), and car seat/seat belts (for children 0 to 14 years old) (\( P < .01 \)). Respondents with a high school education or less reported receiving counseling about smoke detectors (\( P < .01 \)) and safe gun storage (\( P < .01 \)) more often than those with more education. The proportion of families receiving advice about bicycle helmets varied by region of the country. Just 12.1% of respondents from the Midwest reported receiving such counseling compared with 16.5% in the South, 20.5% in the West, and 28.7% in the Northeast (\( P = .01 \)).

In general, there was an association between receipt of subject-specific injury prevention counseling and the related safety behavior (Table 3). However, for children 2 to 14 years of age, receiving counseling about safe gun storage was associated with a lower rate of safe gun storage (\( P = .01 \)). Just 27 respondents with guns in the home reported receiving such counseling, of which 17 were reported to comply. The coefficient of variation of the weighted percent (standard error/point estimate of the weighted percent) adopting safer storage among those so counseled was 23.7%.

### DISCUSSION

Our data suggest that a relatively small proportion of children in this country receive injury prevention counseling from their health care provider. Increasing to 50% the proportion of primary care providers “routinely providing . . . [this] . . . service to 81–100% of patients” is a national health objective. Baseline data for this objective from a 1993 survey showed that 45% of American Academy of Pediatrics members reported inquiring about and 58% reported pro-
viding advice about seat belt/child seat use to >80% of their patients. What a physician reports saying to patients and what patients remember being discussed may be very different, however. A study of safety counseling by physicians in London, Ontario, indicated that although ~55% of physicians reported mentioning age-appropriate safety issues with their patients “always” or “most of the time,” only 19% of the first-time parents who take their children to these physicians reported the same. Given this discrepancy, it could be argued that injury prevention counseling objectives for both the nation and for individual clinicians should be that patients recall receiving this advice.

Our study found associations between specific injury prevention counseling and safety behaviors. A recent review of injury prevention counseling in primary care settings suggested a consistent positive effect of such counseling on use of car seats and seat belts. Other reports have shown an association between physician counseling and obtaining ipecac, understanding its use, and posting the poison control number. Although our study provides evidence that counseling at a medical visit about bicycle helmets is associated with increased reported helmet use, several reports suggest that such efforts should be a part of a multifaceted campaign including incentives, community education, and possibly legislation.

The primary limitations of this study are those common to many cross-sectional surveys. For example, respondents who practice safer behaviors also may be more likely than others to remember safety advice that was mentioned during their visit with the physician (recall bias). Additionally, respondents may have had a tendency to provide socially desirable answers (ie, to report practicing safer behaviors than actually carried out). We have little reason to believe that this tendency would be greater in those who reported receiving injury prevention counseling at a medical visit and, therefore, it is unlikely that this accounts for the associations we observed between counseling and safer behaviors. We have no way to know whether injury prevention counseling led to the reported safer behaviors through a causal relationship.

The response rate of this study was only 56.1%. However, the sample of respondents in our study has a distribution of income, education, age, race, and sex very similar to that for the US population. We have no reason to suspect that nonrespondents or refusers differ from respondents with respect to their children receiving injury prevention counseling from their health care providers.

The small number of gun owners who reported receiving counseling about safe firearm storage (N = 27) makes estimates of the association between counseling and safe gun storage unstable. Perhaps the most meaningful information we can draw from this study regarding gun storage is that a relatively small proportion of people bringing their children to a health care provider (6.3%) are counseled about the safe storage of guns. The large proportion of households that have a smoke detector among those not receiving counseling (~94%) made it difficult to detect any additional benefit associated with counseling.

This report adds to the mounting evidence that injury prevention counseling works to improve the safety practices in US households with children. It also appears that such counseling by pediatricians is cost beneficial. Child health care providers should increase efforts to provide injury prevention counseling.

REFERENCES

Exposure to and Compliance With Pediatric Injury Prevention Counseling—
United States, 1994
Kyran P. Quinlan, Jeffrey J. Sacks and Marcie-jo Kresnow
Pediatrics 1998;102:e55

Updated Information & Services
including high resolution figures, can be found at:
/content/102/5/e55.full.html

References
This article cites 10 articles, 6 of which can be accessed free at:
/content/102/5/e55.full.html#ref-list-1

Citations
This article has been cited by 2 HighWire-hosted articles:
/content/102/5/e55.full.html#related-urls

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Injury, Violence & Poison Prevention
/cgi/collection/injury_violence__poison_prevention_sub
Home Safety
/cgi/collection/home_safety_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PÉDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 1998 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.
Exposure to and Compliance With Pediatric Injury Prevention Counseling—United States, 1994
Kyran P. Quinlan, Jeffrey J. Sacks and Marcie-jo Kresnow
Pediatrics 1998;102:e55

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/102/5/e55.full.html