Hemodynamic Support in Fluid-refractory Pediatric Septic Shock

Gary Ceneviva, MD*‡; J. Alan Paschall, MD¶; Frank Maffei, MD‡; and Joseph A. Carcillo, MD, FAAP*‡§

ABSTRACT. Objective. Assess outcome in children treated with inotrope, vasopressor, and/or vasodilator therapy for reversal of fluid-refractory and persistent septic shock.

Design. Survey; case series.

Setting. Three pediatric hospitals.

Patients. Fifty consecutive patients with fluid-refractory septic shock with a pulmonary artery catheter within 6 hours of resuscitation.

Interventions. Patients were categorized according to hemodynamic state and use of inotrope, vasopressor, and/or vasodilator therapy to maintain cardiac index (CI) >3.3 L/min/m² and systemic vascular resistance >800 dynes·sec/cm²/m² to reverse shock.

Outcome Measures. Hemodynamic state, response to class of cardiovascular therapy, and mortality.

Results. After fluid resuscitation, 58% of the children had a low CI and responded to inotropic therapy with or without a vasodilator (group I), 20% had a high CI and low systemic vascular resistance and responded to vasopressor therapy alone (group II), and 22% had both vascular and cardiac dysfunction and responded to combined vasopressor and inotropic therapy (group III). Shock persisted in 36% of the children. Of the children in group I, 50% needed the addition of a vasodilator, and in group II, 50% of children needed the addition of an inotrope for evolving myocardial dysfunction. Four children showed a complete change in hemodynamic state and responded to a switch from inotrope to vasopressor therapy or vice versa. The overall 28-day survival rate was 80% (group I, 72%; group II, 90%; group III, 91%).

Conclusions. Unlike adults, children with fluid-refractory shock are frequently hypodynamic and respond to inotrope and vasodilator therapy. Because hemodynamic states are heterogeneous and change with time, an incorrect cardiovascular therapeutic regimen should be suspected in any child with persistent shock. Outcome can be improved compared with historical literature. Pediatrics 1998;102(2). URL: http://www.pediatrics.org/cgi/content/full/102/2/e19; inotropes, vasodilators, vasopressors, septic shock, hemodynamics.

ABBREVIATIONS. PALS, pediatric advanced life support; CO, cardiac output; MAP–CVP, mean arterial blood pressure–central venous blood pressure; SVR, systemic vascular resistance; PCWP, pulmonary capillary wedge pressure; CI, cardiac index; SVRI, systemic vascular resistance index; ANOVA, analysis of variance; PICU, pediatric intensive care unit.

From the Departments of *Anesthesiology and Critical Care Medicine and ¶Pediatrics, and the §Center for Clinical Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania; the ¶Department of Anesthesiology and Critical Care Medicine, Children’s National Medical Center, Washington, DC; and the ¶Department of Pediatric Critical Care Medicine, Mary Bridge Children’s Hospital, Tacoma, Washington.

Received for publication June 18, 1997; accepted Apr 14, 1998. Reprint requests to (J.A.C.) Division of Critical Care Medicine, Children’s Hospital of Pittsburgh, 3705 5th Ave, Pittsburgh, PA 15213.

PEDIATRICS (ISSN 0031 4005). Copyright © 1998 by the American Academy of Pediatrics.

http://www.pediatrics.org/cgi/content/full/102/2/e19
prognostically favorable CO and SVR parameters, and outcome in children with fluid-refractory septic shock.

METHODS

Fifty consecutive children with fluid-refractory septic shock and a pulmonary artery catheter placed within 6 hours of fluid resuscitation of 48 hours were admitted to three pediatric intensive care units over a 4-year period (Children's National Medical Center, Washington, DC; Children's Hospital of Pittsburgh, Pittsburgh, PA; Mary Bridge Children's Hospital, Tacoma, WA) were observed. Need for signed informed consent was waived by the respective institutional review boards, and all conditions were obtained. All patients included in the study had full hemodynamic monitoring, and the smallest patient to receive a pulmonary artery catheter weighed 5 kg. All patients had either a positive blood culture finding or a strong clinical suspicion of infection based on the presence of fever or hypothermia, leukocytosis or leukopenia, and a source of infection. Pulmonary artery wedge pressure readings in patients were performed off positive pressure ventilation without measurable adverse outcomes. Ionized calcium concentrations were normalized in all patients. Cardiac outputs were measured in triplicate by thermodilution using a normal saline injectate. All hemodynamic variables using measurement of CO were indexed for body surface area.

Shock was defined as blood pressure <2 SD units below the mean for age and/or fulfilling at least three of the following criteria for decreased perfusion: 1) decreased peripheral pulses; 2) mottled or cool extremities; 3) tachycardia (heart rate >180 beats per minute for infants and >160 beats per minute for children); or 4) urine output <1 mL/kg/h if <30 kg and <0.5 mL/kg/h if >30 kg. Adequate volume loading was defined as a pulmonary capillary wedge pressure (PCWP) >8 and <16 mm Hg. Fluid refractory shock was defined as ongoing shock after fluid resuscitation (≥60 mL/kg) had accomplished a PCWP >8 and <16 mm Hg. Persistent shock was defined as shock that persisted beyond the first 6 hours.

Children with septic shock were considered to have a significant cardiogenic abnormality contributing to the shock state if the cardiac index (CI) was <3.3 L/min/m² (normal range; 3.3 to 5.5 L/min/m²), and a significant vascular tone abnormality contributing to the shock state if the systemic vascular resistance index (SVRI) was <800 dyne-sec/cm²/m² (normal range; 800 to 1600 dyne-sec/cm²/m²). The use of three classes of cardiovascular therapy to reverse shock and maintain CO and SVR was defined according to the following criteria. Inotropic therapy included 1) a complete change in cardiovascular therapy to measure differences within groups over time. The Fisher's exact test was used to evaluate addition of a different class of cardiovascular therapy (ie, addition of vasodilator to children receiving inotrope therapy or addition of inotrope to children receiving vasopressor therapy) to reverse persistent shock. Logistic regression analysis was used to determine the influence of epidemiologic characteristics on hemodynamics and outcome. A P value <0.05 was considered significant.

RESULTS

Fifty children were diagnosed with septic shock refractory to ≥60 mL/kg fluid resuscitation and initial cardiovascular support over the 4-year PICU study. The age of the children was 6.7 ± 5.8 years (mean ± SD; range; 2 months to 18 years). Forty-four of the 50 had culture-positive sepsis. Pathogens included Gram-positive bacteria (26%) and Gram-negative bacteria not including meningococcus (34%), meningococcus (18%), fungus (6%), and virus (4%). Of the 50 children, 29 had no underlying illness; 21 had a chronic illness including malignancy (n = 9), transplantation (n = 4 [2 bone marrow and 2 solid organ]), cerebral palsy/neurologic (n = 4), sickle-cell disease (n = 2), and spina bifida (n = 2). All patients had a PCWP >8 mm Hg at the time of evaluation of CI and SVRI.

All children were receiving cardiovascular therapies at the time of pulmonary artery catheter placement. After assessment of hemodynamic measurements, changes in therapy were directed to improving hemodynamic variables in 44 of 50 patients. Therapeutic maneuvers included 1) a complete change in cardiovascular therapy strategy (ie, change from vasoressor therapy to inotrope therapy in a patient with a low CO/high SVR state, or inotrope to vasoressor therapy in high CO/low SVR state); 2) the addition of a different class of cardiovascular therapy (ie, the addition of a vasodilator to a patient with a high SVR); 3) the addition of direct-acting catecholamines (ie, the addition of norepinephrine to a patient with dopamine-resistant low SVR or epinephrine to a patient with dobutamine-resistant low CO); and 4) an increase in dosage of an existing class of therapy (ie, an increase in dobutamine dose) (Table 1). The cardiovascular agents used to reverse fluid-refractory shock are shown in Table 2.

Inotropic therapy (with or without a vasodilator) was used to reverse shock in 58% of the children (group I), vasoressor therapy alone was used to reverse shock in 20% of the children (group II), and a combination of vasoressor and inotrope therapy was used to reverse shock in 22% of the children (group III). Group I had a lower CI and a higher SVR than did groups II and III (P < .05; Kruskal–Wallis with Dunn’s test) (Table 3).

Thirty-six percent of the children needed the addition of a different class of cardiovascular therapy to reverse persistent septic shock. By 48 hours, 66% of children in group I needed a vasodilator to reduce SVRI, maintain CI >3.3 L/min/m², and reverse persistent shock (P < .05, Fisher’s exact test) (Table 4). CI

Hemodynamic variables in groups I, II, and III were analyzed after fluid resuscitation and pulmonary artery catheter placement, and every 8 hours for the first 48 hours after fluid resuscitation. Twenty-eight day and discharge from the pediatric intensive care unit (PICU) mortality rates were recorded. Kruskal–Wallis and Dunn tests (nonparametric distribution) were used to compare differences in CI and SVRI between groups after fluid resuscitation. Repeated-measured analysis of variance (ANCOVA) was used to test for differences within groups over time. The Fisher’s exact test was used to evaluate addition of a different class of cardiovascular therapy (ie, addition of vasodilator to children receiving inotrope therapy or addition of inotrope to children receiving vasoressor therapy) to reverse persistent shock. Logistic regression analysis was used to determine the influence of epidemiologic characteristics on hemodynamics and outcome. A P value <0.05 was considered significant.

RESULTS

Fifty children were diagnosed with septic shock refractory to ≥60 mL/kg fluid resuscitation and initial cardiovascular support over the 4-year PICU study. The age of the children was 6.7 ± 5.8 years (mean ± SD; range; 2 months to 18 years). Forty-four of the 50 had culture-positive sepsis. Pathogens included Gram-positive bacteria (26%) and Gram-negative bacteria not including meningococcus (34%), meningococcus (18%), fungus (6%), and virus (4%). Of the 50 children, 29 had no underlying illness; 21 had a chronic illness including malignancy (n = 9), transplantation (n = 4 [2 bone marrow and 2 solid organ]), cerebral palsy/neurologic (n = 4), sickle-cell disease (n = 2), and spina bifida (n = 2). All patients had a PCWP >8 mm Hg at the time of evaluation of CI and SVRI.

All children were receiving cardiovascular therapies at the time of pulmonary artery catheter placement. After assessment of hemodynamic measurements, changes in therapy were directed to improving hemodynamic variables in 44 of 50 patients. Therapeutic maneuvers included 1) a complete change in cardiovascular therapy strategy (ie, change from vasoressor therapy to inotrope therapy in a patient with a low CO/high SVR state, or inotrope to vasoressor therapy in high CO/low SVR state); 2) the addition of a different class of cardiovascular therapy (ie, the addition of a vasodilator to a patient with a high SVR); 3) the addition of direct-acting catecholamines (ie, the addition of norepinephrine to a patient with dopamine-resistant low SVR or epinephrine to a patient with dobutamine-resistant low CO); and 4) an increase in dosage of an existing class of therapy (ie, an increase in dobutamine dose) (Table 1). The cardiovascular agents used to reverse fluid-refractory shock are shown in Table 2.

Inotropic therapy (with or without a vasodilator) was used to reverse shock in 58% of the children (group I), vasoressor therapy alone was used to reverse shock in 20% of the children (group II), and a combination of vasoressor and inotrope therapy was used to reverse shock in 22% of the children (group III). Group I had a lower CI and a higher SVR than did groups II and III (P < .05; Kruskal–Wallis with Dunn’s test) (Table 3).

Thirty-six percent of the children needed the addition of a different class of cardiovascular therapy to reverse persistent septic shock. By 48 hours, 66% of children in group I needed a vasodilator to reduce SVRI, maintain CI >3.3 L/min/m², and reverse persistent shock (P < .05, Fisher’s exact test) (Table 4). CI
TABLE 1. Changes in Cardiovascular Therapies Instituted After Initial Evaluation of CI and SVRI

<table>
<thead>
<tr>
<th>Added Vasodilator</th>
<th>Added Catecholamines</th>
<th>Changed Therapy Regimen</th>
<th>Increased Class of Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>n = 8</td>
<td>n = 3</td>
<td>n = 5</td>
</tr>
<tr>
<td>Nitroprusside</td>
<td>Epinephrine</td>
<td>Changed from vasopressor to inotrope</td>
<td>Increased or added new inotrope</td>
</tr>
<tr>
<td>Group II</td>
<td>n = 3</td>
<td>n = 3</td>
<td>n = 2</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>Epinephrine</td>
<td>Changed from inotrope to vasopressor</td>
<td>Increased or added new vasopressor</td>
</tr>
<tr>
<td>Group III</td>
<td>n = 4</td>
<td>n = 2</td>
<td>n = 2</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>Norepinephrine</td>
<td>Changed from inotrope alone or vasopressor alone to inotrope and vasopressor</td>
<td>Increased inotrope</td>
</tr>
</tbody>
</table>

TABLE 2. Dose Ranges of Cardiovascular Agents Used After Fluid Resuscitation and Initial Therapy Adjustment

<table>
<thead>
<tr>
<th>Agent</th>
<th>Range (µg/kg/min)</th>
<th>Range (µg/kg/min)</th>
<th>Range (µg/kg/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dobutamine</td>
<td>11.2 ± 1.6 [5–20]</td>
<td>16 ± 1.2 [12–20]</td>
<td>2.2 ± 0.7 [0.1–5.0]</td>
</tr>
<tr>
<td>Dopamine</td>
<td>4.9 ± 0.2 [4–8]</td>
<td>0.13 ± 0.04 [0.5–2]</td>
<td></td>
</tr>
<tr>
<td>Epinephrine</td>
<td>0.13 ± 0.04 [0.5–2]</td>
<td>.48 ± .22 [0.3–2.0]</td>
<td></td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>.56 ± .35 [0.1–3.0]</td>
<td>2.2 ± .7 [0.1–5.0]</td>
<td></td>
</tr>
<tr>
<td>Nitroprusside</td>
<td>.56 ± .35 [0.1–3.0]</td>
<td>2.2 ± .7 [0.1–5.0]</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3. CI (L/min/m²) and SVRI (dyne/sec/cm⁵) in Groups I, II, and III After Fluid Resuscitation, Initial Therapy Adjustment, and 48 Hours

<table>
<thead>
<tr>
<th>Group</th>
<th>CI (L/min/m²)</th>
<th>SVRI (dyne/sec/cm²)</th>
<th>After Fluid Resuscitation</th>
<th>After Initial Therapy Adjustment</th>
<th>48 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I (n = 29)</td>
<td>3.06 ± .26</td>
<td>6.5 ± .75</td>
<td>8.51 ± 1.1</td>
<td>6.5 ± .75</td>
<td>5.06 ± .41**</td>
</tr>
<tr>
<td>Group II (n = 10)</td>
<td>1794 ± 176</td>
<td>1758 ± 158*</td>
<td>1758 ± 158*</td>
<td>1178 ± 65**</td>
<td></td>
</tr>
<tr>
<td>Group III (n = 11)</td>
<td>919 ± 99</td>
<td>910 ± 91**</td>
<td>910 ± 91**</td>
<td>910 ± 91**</td>
<td></td>
</tr>
</tbody>
</table>

Values = mean ± SEM. * P < .05 difference group I versus group II and group III after fluid-resuscitation and initial therapy adjustment (Kruskal–Wallis with Dunn’s tests). ** P < .05 difference in hemodynamic variables over time within group compared with baseline after fluid resuscitation (repeated-measures ANOVA with Student Neuman–Keuls tests).

TABLE 4. Classes of Cardiovascular Therapy Used After Fluid Resuscitation and Initial Therapy Adjustment, and Over First 48 Hours in Groups I, II, and III

<table>
<thead>
<tr>
<th>Group</th>
<th>Therapy Regimen</th>
<th>Increased Class of Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>After Fluid Resuscitation and Initial Therapy Adjustment</td>
<td>21 patients inotropes alone, 8 patients inotropes + vasodilators</td>
</tr>
<tr>
<td>Group II</td>
<td>After Fluid Resuscitation and Initial Therapy Adjustment</td>
<td>8 patients inotropes alone, 19 patients inotropes + vasodilators, 1 patient inotrope + vasopressor, 1 patient vasopressor only</td>
</tr>
<tr>
<td>Group III</td>
<td>After Fluid Resuscitation and Initial Therapy Adjustment</td>
<td>5 patients vasopressor only, 2 patients vasopressor + inotrope, 2 patients inotrope alone, 1 patient inotrope + vasodilator</td>
</tr>
</tbody>
</table>

Increased and SVRI decreased when additional vasodilator therapy was used in this group of children (P < .05, repeated-measures ANOVA) (Table 3). Fifty percent of the children in group II needed the addition of inotropic therapy to maintain CI >3.3 L/min/m² and reverse persistent shock (P < .05, Fisher’s exact test) (Table 4). CI decreased but was maintained within the normal therapeutic range when inotropic therapy was added in this group of children (P < .05, repeated-measures ANOVA) (Table 3). Group III received no additional classes of therapy; however, vasopressor use decreased over the next 48 hours (Table 4). Systemic vascular resistance was maintained within the normal range, and CI increased with decreased use of vasopressor therapy in this group (P < .05, repeated-measures ANOVA) (Table 3).

Four children with persistent shock showed a complete change in hemodynamic profile over 48 hours. One child evolved from a low CO/high SVR state to a high CO/low SVR state, and 3 children evolved from a high CI/low SVR state to a low CI/high SVR state and responded to appropriate changes in class of cardiovascular therapies (Table 4). Of the children, 80% survived 28 days, and 78% survived to discharge from the PICU. The 1 patient who survived to 28 days but not PICU discharge died from resistant nocardia pneumonia and unremitting acute myelocytic leukemia. The 28-day mortality rate in group I was higher (8/29, 28%) than in group II (1/10, 10%) and group III (1/11, 9%). The mortality rate was 33% (6/18) in children who needed treatment with a different class of therapy to reverse persistent shock. Microbial etiology and
health status had no influence on hemodynamic state, response to cardiovascular therapies, or mortality.

DISCUSSION

To our knowledge, this is the first report examining hemodynamic variable-directed inotrope, vasopressor, and vasodilator therapy in children with fluid-refractory septic shock after a minimum of 60 mL/kg volume resuscitation. The standard measure of pulmonary artery wedge pressure documented the adequacy of fluid resuscitation in these children. All patients received cardiotonic or vasoactive infusions through central venous access at the time of fluid resuscitation when it was apparent that shock was refractory to volume replacement. Refractory shock prompted placement of pulmonary artery catheters. The standard measures of CO and SVR documented the adequacy of directed cardiovascular therapy regimens in these children with fluid refractory and/or persistent septic shock. Analysis of hemodynamic variables after fluid resuscitation showed that 9 children were receiving incorrect cardiovascular therapy regimens. Changes in cardiovascular therapy regimens resulted in resolution of shock in these children. Life-threatening pericardial tamponade (n = 2) and suprasystemic pulmonary artery hypertension (n = 1) were diagnosed in 3 children. Pericardiocentesis and the use of inhaled nitric oxide contributed to resolution of shock in these patients.

After initial therapeutic adjustments, children with fluid-refractory shock were found to have heterogeneous hemodynamic states. In contrast to adult reports, the majority of children were hypodynamic and needed inotropic support. Many needed the addition of vasodilators to decrease SVR, increase CI, and improve perfusion. Findings from two previous pediatric studies are consistent with our findings. Reynolds et al reported that pediatric burn patients with fluid refractory shock had decreased left ventricular stroke work and responded to inotropic support with increased cardiac output and resolution of shock. Feltes and colleagues reported that echocardiographic analysis showed decreased systolic function and increased afterload in 5 of 10 children studied with septic shock and in none of 5 with sepsis without shock.

The differences observed between pediatric and adult reports could represent an age-related phenomenon. Parker and colleagues reported that adults with septic shock have decreased ejection fraction but increased CO through ventricular dilatation and increased heart rate. Feltes et al did not observe ventricular dilatation in children with septic shock. The relative ability of children to increase CO with heart rate changes may be limited. An adult can increase resting heart rate from 60 to 100 beats per minute, but a proportionate increase in an infant from 140 to 220 beats per minute is not sustainable. It also is possible that differences in patient selection explain the predominance of the hypodynamic state in our study. Children refractory to fluid resuscitation who responded to initial cardiovascular therapies with normal perfusion, urine output, and resolution of metabolic acidosis did not receive pulmonary artery catheters in our intensive care units. If adult intensive care units tend to place pulmonary artery catheters in patients with fluid-refractory septic shock when cardiovascular therapies are effective, then their patient population could differ from ours. It is possible that we selected for children with more severe cardiac dysfunction, if children with predominant vascular dysfunction responded to volume loading and children with predominant cardiac failure did not.

A smaller number of children with fluid-refractory shock presented with vascular failure. Approximately 1 of 5 fluid-refractory children were hypodynamic, with diminished SVR that responded to vasopressor support without a decrease in CI below normal thresholds; another 1 of 5 required a combination of inotropics and vasopressor support to reverse shock. The hyperdynamic state is the hallmark of cardiovascular pathophysiology in adult sepsis. Systemic vascular resistance decreases as the vasculature becomes increasingly less responsive to catecholamines, in part, from intrinsic biochemical alterations in α-adrenergic receptor signal transduction mechanisms. If the patient is volume-loaded, the decrease in afterload is accompanied by an increase in CO and the “hyperdynamic state.” Without volume-loading, an increase in CO is not possible because preload is decreased. The hyperdynamic state is characterized by an elevated CO; however, significant myocardial depression can be present and contribute to a variable CO response to vasopressor therapy. As with adults, the majority of children with hyperdynamic sepsis were able to maintain CO during vasopressor therapy; however, some children needed the addition of an inotrope to maintain CO and reverse shock.

Common adjustments in therapy that reversed fluid-refractory shock included the use of epinephrine or norepinephrine to reverse dobutamine/dopamine-resistant septic shock. The direct-acting catecholamines were added to regimens in 12 patients with dobutamine/dopamine-resistant septic shock after initial evaluation of CI and SVRI, and 14 other children were already receiving epinephrine or norepinephrine at the time of placement of the pulmonary artery catheter. Dopamine and dobutamine have been reported to be potentially less effective in infants than in adults. Vasodilators were effective in reversing fluid-refractory shock in children with cardiac dysfunction and increased vascular resistance. Because vasodilators cause hypotension when a child is not adequately volume-loaded, these agents were added in our population after increased SVR and adequate PCWP were documented.

Shock persisted in more than 1 of 3 children. Evolving hemodynamic changes required the addition of different classes of cardiovascular therapy. Progressive myocardial dysfunction appeared to be a significant cause of persistent shock. There was a need for additional vasodilator therapy in children with the low CO/high SVR state, and inotropic ther-
apy in children who initially had a high CO/low SVR state. The hypodynamic state has been reported in children and adults with meningococcal septic shock as well as with septic shock from multiple etiologies.6,7,35,36 Experimental studies suggest that cytokines including tumor necrosis factor and end-effector molecules including nitric oxide can depress myocardial function directly.37

Some children showed a complete change in class of drug needed to treat persistent shock (ie, from inotrope to vasopressor or from vasopressor to inotrope). Animal models have shown that hypodynamic or hyperdynamic septic shock can be attained with different methods of endotoxin or bacterial infusion.38 Early studies showed that acute models (using bolus endotoxin or bacterial infusions) and chronic models (using chronic endotoxin infusion or peritoneal clot infections over 24 to 48 hours) resulted in low CO states.39 It was only after the use of aggressive volume resuscitation (~60 mL/kg) that the chronic endotoxin infusion and peritoneal clot models were found to exhibit the high CO/low SVR state and improved survival.23,44 Volume resuscitation had little effect on the acute bolus models, because the low CO/high SVR state persisted despite restoration of adequate preload.38 We reported previously a volume-resuscitated (60 mL/kg) swine model of septic shock in which an intraperitoneal bolus infusion of Escherichia coli resulted in low CO/high SVR state 6 hours after infusion. The animals survived if they received 60 mL/kg volume resuscitation at the onset of hypotension (1 hour after infusion). Twenty-four hours later, the animals showed a change to a high CI/SVR state, with a 50% mortality rate.41 The experimental animal data and our clinical findings suggest that any patient who shows persistent shock should be assumed to be receiving an incorrect cardiotonic and/or vasoactive regimen until proven otherwise.

Studies in humans suggest that low CO and/or low SVR is deleterious to organ perfusion and survival during septic shock.3,6,8,35,37,42-44 Pollack et al examined children with septic shock and reported a 32% overall survival but noted that patients who maintained a CI between 3.3 and 6.0 L/min/m² had a higher rate of survival (67%).6 On the basis of these findings, they recommended maintenance of this CI range as a therapeutic goal in septic shock. In our study, children with decreased vascular tone were treated with vasopressors, and CI was maintained endogenously or with inotropes. The SVRI was maintained within the therapeutic goal range of >800 dyne/sec/cm², and survival was >90%.

Children with persistent shock had a higher mortality rate (33%). Five of the 6 children in this group exhibited evolving myocardial dysfunction as the cause of persistent shock. The one child with persistent shock who developed a hyperdynamic–low systemic vascular resistance state died of unrecognized and untreated candida sepsis. Adult studies suggest that evolving vascular failure is associated with death in septic shock;3,8,11,44 however, evolving cardiac dysfunction was associated with mortality in our children with persistent septic shock. Attention to maintenance of cardiac output may be of greater importance to improved survival in children with fluid-refractory shock.

Limitations of our study include experimental design. We attempted to evaluate prospectively hemodynamic states and effectiveness of different classes of cardiovascular therapy to fluid refractory shock; however, the institutional review board stated that stopping cardiovascular therapy for the purpose of documenting hemodynamic states and randomizing classes of cardiovascular therapy to prove effectiveness was not ethical in children with shock. Therefore, we used an observational case series design in which existing therapies were directed to abnormal hemodynamic variables. The study shows data within 6 hours of admission to the intensive care unit rather than at the time of fluid resuscitation, because the insertion of the pulmonary artery catheter in children is a time-consuming process. The study also uses definitions of vasopressors and inotropes13-16 and normal ranges of CI and SVRI12-16 that, although based on published tables in standard pediatric intensive care textbooks, can be questioned. For example, because dopamine and epinephrine have mixed β- and α-adrenergic qualities, it is not necessarily true that epinephrine infusions <0.3 μg/kg/min or dopamine infusions <10 μg/kg/min have no vasopressor effect. Likewise, the inodilators amrinone and milrinone have inotrope and vasodilator qualities; therefore, classification as inotropes and not as vasodilators is arbitrary. The study population was heterogeneous with varied organisms and disease states. Although there were no apparent differences in hemodynamics, use of specific classes of cardiovascular agents, or mortality in the different groups of patients, our small sample size precludes any conclusion about responses in homogeneous patient populations. Greater numbers of children will be required to determine any differences in these subgroups.

Despite the inherent limitations in study design, several important clinical observations were made in our population of fluid-refractory septic shock patients. Children with fluid-refractory shock in three pediatric centers had varied hemodynamic profiles that responded to directed inotrope, vasopressor, and vasodilator therapy, with reversal of shock, maintenance of CI and SVRI goals, and improved outcome compared with findings in the historical liter-
nature. Common therapeutic maneuvers that resulted in reversal of fluid-refractory shock included use of the correct class of cardiovascular agent for cardiac or vascular failure (inotropic or vasopressor, respectively), direct-acting catecholamines for dopamine or dobutamine-resistant shock (norepinephrine or epinephrine, respectively), and vasodilators for the high SVR/low CO shock state. In contrast to adult reports, decreased cardiac output was a predominant contributor to fluid-refractory shock, evolving persistent shock, and possibly mortality in our pediatric population. Because hemodynamic profiles were heterogeneous and changed during all stages of fluid-refractory septic shock, we suggest that it is prudent to assume that refractory or persistent shock is secondary to an inappropriate cardiovascular support regimen rather than an inexorable pathophysiologic state until otherwise proven. It appears that outcome in children with fluid-refractory septic shock can be improved compared with findings in the historical literature.

ACKNOWLEDGMENTS

This work was supported by 3M01RR00056GCRC (University of Pittsburgh).

We thank Francie Siegried for editorial assistance. We also thank Richard Orr, MD, and Shekhar Venkataraman, MD, for critical review of the manuscript.

REFERENCES

Hemodynamic Support in Fluid-refractory Pediatric Septic Shock
Gary Ceneviva, J. Alan Paschall, Frank Maffei and Joseph A. Carcillo
Pediatrics 1998;102:e19

Updated Information & Services
including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/102/2/e19

References
This article cites 39 articles, 1 of which you can access for free at:
http://pediatrics.aappublications.org/content/102/2/e19.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Teaching/Curriculum Development
http://classic.pediatrics.aappublications.org/cgi/collection/teaching_curriculum_dev_sub
Emergency Medicine
http://classic.pediatrics.aappublications.org/cgi/collection/emergency_medicine_sub
Infectious Disease
http://classic.pediatrics.aappublications.org/cgi/collection/infectious_diseases_sub
Epidemiology
http://classic.pediatrics.aappublications.org/cgi/collection/epidemiology_sub
Cardiology
http://classic.pediatrics.aappublications.org/cgi/collection/cardiology_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
https://shop.aap.org/licensing-permissions/

Reprints
Information about ordering reprints can be found online:
http://classic.pediatrics.aappublications.org/content/reprints